Effect of Co addition on the microstructure evolution and superplastic behavior of Ti-4Al-3Mo-1V-0.1B alloy

Effect of Co addition on the microstructure evolution and superplastic behavior of Ti-4Al-3Mo-1V-0.1B alloy

Anton D. Kotov, Maria N Postnikova, Ahmed O. Mosleh, Anastasia V. Mikhaylovskaya

download PDF

Abstract. Temperature reduction of superplastic forming of titanium alloys is currently a significant issue. The present study focused on the effect of modifying the Ti-4Al-3Mo-1V-0.1B alloy with 0.5-2 wt% Co additions on the superplastic behavior and microstructure evolution. The results demonstrated that Co alloying promoted the formation of recrystallized and globular microstructure before the beginning of superplastic deformation due to the acceleration of diffusivity by Co in comparison with the Co-free alloy. The diffusivity acceleration also led to dynamic grain growth during superplastic deformation but promoted a stable superplastic flow of alloys with 0.5-2% Co at temperatures of 700-750 °C. This enhanced the strain rate sensitivity coefficient m from 0.35-0.4 to 0.5-0.65 and the elongation to failure from 200-350% to 500-1000% compared to the Co-free alloy. The 2 wt% Co alloying provided excellent low-temperature superplasticity in the temperature range of 625-775 °C with a coefficient m of 0.5-0.65 and elongation to failure of 800-1000% at a constant strain rate of 1 × 10-3 s-1.

Titanium Alloys, Superplasticity, Microstructural Evolution, Dynamic Grain Growth, Flow Stress

Published online , 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Anton D. Kotov, Maria N Postnikova, Ahmed O. Mosleh, Anastasia V. Mikhaylovskaya, Effect of Co addition on the microstructure evolution and superplastic behavior of Ti-4Al-3Mo-1V-0.1B alloy, Materials Research Proceedings, Vol. 32, pp 181-188, 2023

DOI: https://doi.org/10.21741/9781644902615-20

The article was published as article 20 of the book Superplasticity in Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] V.N. Moiseyev, Titanium alloys: Russian aircraft and aerospace applications, CRC Press, Boca Raton, FL, USA, 2005.
[2] M. Peters, C. Leyens, Fabrication of Titanium Alloys, in: C. Leyens, M. Peters (Eds.), Titan. Titan. Alloy., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005: pp. 245–261. https://doi.org/10.1002/3527602119.ch8
[3] N. Ridley, Metals for superplastic forming, in: Superplast. Form. Adv. Met. Mater., Woodhead Publishing, Sawston, UK, 2011: pp. 3–33. https://doi.org/10.1533/9780857092779.1.3
[4] M. Jackson, Superplastic forming and diffusion bonding of titanium alloys, in: Superplast. Form. Adv. Met. Mater., Woodhead Publishing Limited, Cambridge, United Kingdom, 2011: pp. 227–246. https://doi.org/10.1533/9780857092779.3.227
[5] T.G. Langdon, Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998–6010. https://doi.org/10.1007/s10853-009-3780-5
[6] S.V. Zherebtsov, E.A. Kudryavtsev, G.A. Salishchev, B.B. Straumal, S.L. Semiatin, Microstructure evolution and mechanical behavior of ultrafine Ti 6Al 4V during low-temperature superplastic deformation, Acta Mater. 121 (2016) 152–163. https://doi.org/10.1016/j.actamat.2016.09.003
[7] R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Prog. Mater. Sci. 137 (2023) 101131. https://doi.org/10.1016/j.pmatsci.2023.101131
[8] A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Enhanced superplasticity in a Ti-6Al-4V alloy processed by severe plastic deformation, Scr. Mater. 43 (2000) 819–824. https://doi.org/10.1016/S1359-6462(00)00496-6
[9] J.A. Wert, N.E. Paton, Enhanced superplasticity and strength in modified Ti-6AI-4V alloys, Metall. Trans. A. 14 (1983) 2535–2544. https://doi.org/10.1007/BF02668895
[10] E. Alabort, D. Barba, M.R. Shagiev, M.A. Murzinova, R.M. Galeyev, O.R. Valiakhmetov, A.F. Aletdinov, R.C. Reed, Alloys-by-design: Application to titanium alloys for optimal superplasticity, Acta Mater. 178 (2019) 275–287. https://doi.org/10.1016/j.actamat.2019.07.026
[11] J. Koike, Y. Shimoyama, H. Fujii, K. Maruyama, Characterization of superplasticity in Ti-5.5Al-1Fe alloys, Scr. Mater. 39 (1998) 1009–1014. https://doi.org/10.1016/S1359-6462(98)00286-3
[12] B.H. Prada, J. Mukhopadhyay, A.K. Mukherjee, Effect of Strain and Temperature in a Superplastic Ni-Modified Ti-6A1-4V Alloy, Mater. Trans. JIM. 31 (1990) 200–206. https://doi.org/10.2320/matertrans1989.31.200
[13] D. Klimenko, M. Ozerov, S. Suresh, N. Stepanov, M.A. Tikhonovsky, G. Salishchev, S. Zherebtsov, Microstructure Evolution and Properties of Ti-6Al-4V Alloy Doped with Fe and Mo during Deformation at 800°C, Defect Diffus. Forum. 385 (2018) 144–149. https://doi.org/10.4028/www.scientific.net/DDF.385.144
[14] M.L. Meier, D.R. Lesuer, A.K. Mukherjee, The effects of the α/β phase proportion on the superplasticity of Ti-6Al-4V and iron-modified Ti-6Al-4V, Mater. Sci. Eng. A. 154 (1992) 165–173. https://doi.org/10.1016/0921-5093(92)90342-X
[15] A. V. Mikhaylovskaya, A.O. Mosleh, P. Mestre-Rinn, A.D. Kotov, M.N. Sitkina, A.I. Bazlov, D. V. Louzguine-Luzgin, High-Strength Titanium-Based Alloy for Low-Temperature Superplastic Forming, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 52 (2021) 293–302. https://doi.org/10.1007/s11661-020-06058-8
[16] A.D. Kotov, M.N. Postnikova, A.O. Mosleh, A. V. Mikhaylovskaya, Influence of Fe on the microstructure, superplasticity and room-temperature mechanical properties of Ti–4Al–3Mo–1V-0.1B alloy, Mater. Sci. Eng. A. 845 (2022) 143245. https://doi.org/10.1016/j.msea.2022.143245
[17] A.D. Kotov, M.N. Postnikova, A.O. Mosleh, V. V. Cheverikin, A. V. Mikhaylovskaya, Microstructure and Superplastic Behavior of Ni-Modified Ti-Al-Mo-V Alloys, Metals (Basel). 12 (2022) 741. https://doi.org/10.3390/met12050741
[18] A.D. Kotov, A. V. Mikhailovskaya, A.O. Mosleh, T.P. Pourcelot, A.S. Prosviryakov, V.K. Portnoi, Superplasticity of an Ultrafine-Grained Ti–4% Al–1% V–3% Mo Alloy, Phys. Met. Metallogr. 120 (2019) 60–68. https://doi.org/10.1134/S0031918X18100083
[19] D. Hill, R. Banerjee, D. Huber, J. Tiley, H.L. Fraser, Formation of equiaxed alpha in TiB reinforced Ti alloy composites, Scr. Mater. 52 (2005) 387–392. https://doi.org/10.1016/j.scriptamat.2004.10.019
[20] M.N. Postnikova, A.D. Kotov, A.I. Bazlov, A.O. Mosleh, S. V. Medvedeva, A. V. Mikhaylovskaya, Effect of Boron on the Microstructure, Superplastic Behavior, and Mechanical Properties of Ti-4Al-3Mo-1V Alloy, Materials (Basel). 16 (2023) 3714. https://doi.org/10.3390/ma16103714
[21] M. Jain, M.C. Chaturvedi, N.L. Richards, N.C. Goel, Microstructural characteristics in α phase during superplastic deformation of Ti6Al4V, Mater. Sci. Eng. A. 145 (1991) 205–214. https://doi.org/10.1016/0921-5093(91)90250-Q
[22] H. Imai, G. Yamane, H. Matsumoto, V. Vidal, V. Velay, Superplasticity of metastable ultrafine-grained Ti-6242S alloy: Mechanical flow behavior and microstructural evolution, Mater. Sci. Eng. A. 754 (2019) 569–580. https://doi.org/10.1016/j.msea.2019.03.085
[23] M.L. Meier, D.R. Lesuer, A.K. Mukherjee, α Grain size and β volume fraction aspects of the superplasticity of Ti-6Al-4V, Mater. Sci. Eng. A. 136 (1991) 71–78. https://doi.org/10.1016/0921-5093(91)90442-P
[24] J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, K. Maruyama, Stress-induced phase transformation during superplastic deformation in two-phase Ti–Al–Fe alloy, Acta Mater. 48 (2000) 2059–2069. https://doi.org/10.1016/S1359-6454(00)00049-5
[25] J.S. Kim, D.M. Li, C.S. Lee, Alloying effects on superplastic behaviour of Ti-Fe-Al-Ni alloys, Mater. Sci. Technol. 14 (1998) 676–682. https://doi.org/10.1179/mst.1998.14.7.676