Static response of FGM shell using refined higher-order shear and normal deformation theory

Static response of FGM shell using refined higher-order shear and normal deformation theory

Sumit S. Kolapkar, Atteshamuddin S. Sayyad

download PDF

Abstract. In the present study, a static response of functionally graded plate and spherical shells is investigated using higher-order trigonometric shear and normal deformation theory. A need of the shear correction factor is obviated and the effect of actual cross-sectional warping has been considered to get the realistic behaviour of transverse shear stresses across the thickness of the shell. The Navier solution technique has been used to analyse the simply-supported boundary conditions of the shell. To verify the theory, the numerical results obtained using the present theory are compared with other higher-order shear deformation theories available in the literature. The numerical results are obtained with and without considering the effects of transverse normal strain (εz).

Static Response, FGM Shell, Higher-Order Shear, Normal Deformation Theory

Published online 8/10/2023, 11 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Sumit S. Kolapkar, Atteshamuddin S. Sayyad, Static response of FGM shell using refined higher-order shear and normal deformation theory, Materials Research Proceedings, Vol. 31, pp 117-127, 2023


The article was published as article 13 of the book Advanced Topics in Mechanics of Materials, Structures and Construction

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] G. Kirchhoff, Über das Gleichgewicht und die Bewegung, J Reine Angew Math. 40 (1850) 51-88.
[2] R. D. Mindlin, Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates, J. Appl. Mech. vol. 18, no. 1(Mar. 1951) 31-38. doi: 10.1115/1.4010217.
[3] H. T. Thai and T. P. Vo, A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates, Appl. Math. Model. vol. 37, no. 5 (2013) 3269-3281. doi: 10.1016/j.apm.2012.08.008.
[4] S. H. Chi and Y. L. Chung, Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis, Int. J. Solids Struct. vol. 43, no. 13 (2006) 3657-3674. doi: 10.1016/j.ijsolstr.2005.04.011.
[5] J. L. Mantari, I. A. Ramos, E. Carrera, and M. Petrolo, Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation, Compos. Part B Eng. 89 (2016) 127-142. doi: 10.1016/j.compositesb.2015.11.025.
[6] M. Bhandari and K. Purohit, Response of Functionally Graded Material Plate under Thermomechanical Load Subjected to Various Boundary Conditions, Int. J. Met. 2015 (2015) 1-16. doi: 10.1155/2015/416824.
[7] M. Bhandari and K. Purohit, Static Response of Functionally Graded Material Plate under Transverse Load for Varying Aspect Ratio, Int. J. Met. 2014 (2014) 1-11. doi: 10.1155/2014/980563.
[8] A. F. Mota, M. A. R. Loja, J. I. Barbosa, and J. A. Rodrigues, Porous Functionally Graded Plates: An Assessment of the Influence of Shear Correction Factor on Static Behavior, Math. Comput. Appl. vol. 25, no. 2 (2020) 1-26. doi: 10.3390/mca25020025.
[9] D. Punera and T. Kant, Elastostatics of laminated and functionally graded sandwich cylindrical shells with two refined higher order models, Compos. Struct. vol. 182, no. January (2017) 505-523. doi: 10.1016/j.compstruct.2017.09.051.
[10] K. Swaminathan and D. M. Sangeetha, Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods, Compos. Struct. 160 (2017) 43-60. doi: 10.1016/j.compstruct.2016.10.047.
[11] M. Zidi, A. Tounsi, M. S. A. Houari, E. A. Adda Bedia, and O. Anwar Bég, Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory, Aerosp. Sci. Technol. vol. 34, no. 1 (2014) 24-34. doi: 10.1016/j.ast.2014.02.001.
[12] K. Swaminathan, D. T. Naveenkumar, A. M. Zenkour, and E. Carrera, Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review, Compos. Struct. 120 (2015) 10-31. doi: 10.1016/j.compstruct.2014.09.070.
[13] B. M. Shinde and A. S. Sayyad, A new higher order shear and normal deformation theory for FGM sandwich shells, Compos. Struct. 280 (2022) 1-25. doi: 10.1016/j.compstruct.2021.114865.
[14] B. M. Shinde and A. S. Sayyad, A new higher-order theory for the static and dynamic responses of sandwich FG plates, J. Comput. Appl. Mech. vol. 52, no. 1 (2021) 102-125. doi: 10.22059/JCAMECH.2020.313152.569.
[15] S. Yadav, S. Damse, S. Pendhari, K. Sangle, and A. S. Sayyad, Comparative studies between Semi-analytical and shear deformation theories for functionally graded beam under bending, Forces Mech. 8 (2022). 01-12. doi: 10.1016/j.finmec.2022.100111.
[16] A. S. Sayyad and Y. M. Ghugal, Static and free vibration analysis of doubly-curved functionally graded material shells, Compos.Struct. 269 (2021) 1-17. doi:10.1016/j.compstruct.2021.114045.
[17] H.-T. Thai, T.-K. Nguyen, T. P. Vo, and J. Lee, Analysis of functionally graded sandwich plates using a new first-order shear deformation theory, Eur. J. Mech. – A/Solids. 45 (2014) 211-225. doi: 10.1016/j.euromechsol.2013.12.008.
[18] P. A. Demirhan and V. Taşkin, Static analysis of simply supported functionally graded sandwich plates by using four variable plate theory, Tek. Dergi/Technical J. Turkish Chamb. Civ. Eng. vol. 30, no. 2 (2019) 8987-9007. doi: 10.18400/tekderg.396672.