Fabrication of Nanomaterials via Ionic Liquids for Optoelectronics


Fabrication of Nanomaterials via Ionic Liquids for Optoelectronics

Md. Arif Faisal, Md. Abu Bin Hasan Susan

Nanomaterials can be fabricated with fascinating morphologies to develop smart optoelectronic devices based on nanotechnology. One of the best ways to fabricate materials of this kind is to follow the template-based strategy where the ionic liquids (ILs) offer great potential as the shape-controlling agent. Due to their unique physicochemical characteristics, ILs can act as a better template overpowering the conventional templates to synthesize nanomaterials with desirable morphology and characteristics. The exquisite morphologies of metals or metal oxides can be achieved using ILs, which may further advance the performance of optoelectronics. In this chapter, we have discussed optoelectronics, ILs and their classifications, controlled morphology of smart materials for optoelectronics, and fabrication of nanomaterials via ILs.

Ionic Liquid, Morphology, Optoelectronics, Synthesis, Nanofabrication, Metal Oxide, Template

Published online , 36 pages

Citation: Md. Arif Faisal, Md. Abu Bin Hasan Susan, Fabrication of Nanomaterials via Ionic Liquids for Optoelectronics, Materials Research Foundations, Vol. 148, pp 27-62, 2023

DOI: https://doi.org/10.21741/9781644902554-2

Part of the book on Applications of Emerging Nanomaterials and Nanotechnology

[1] J. H. Myung, S. j. Park, A. Cha, S. Hong, Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs), Adv. Drug Deliv. Rev., 125 (2018) 36–47. https://doi.org/10.1016/j.addr.2017.12.005
[2] Y. Liu, C. N. Ong, J. Xie, Emerging nanotechnology for environmental applications, Nanotechnol. Rev. 5 (2016) 1–2. https://doi.org/10.1515/ntrev-2015-0072
[3] Z. L. Wang, W. Wu, Nanotechnology‐enabled energy harvesting for self‐powered micro‐/nanosystems, Angew. Chem., Int. Ed. 51 (2012) 11700–11721. https://doi.org/10.1002/anie.201201656
[4] X. Yu, T. J. Marks, A. Facchetti, Metal oxides for optoelectronic applications, Nature Mater 15 (2016) 383–396. https://doi.org/10.1038/nmat4599
[5] Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties & Applications, 2nd ed.; Imperial College Press: UK, 2004
[6] A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, V. M. Rotello, Self-assembly of nanoparticles into structured spherical and network aggregates, Nature, 404 (2000) 746–748. https://doi.org/10.1038/35008037
[7] T. Y. Zhai, L. Li, Y. Ma, M. Y. Liao, X. Wang, X. S. Fang, J. N. Yao, Y. Bando, D. Golberg, One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection, Chem. Soc. Rev. 40 (2011) 2986–3004. https://doi.org/10.1039/C0CS00126K
[8] Z. L. Wang, Zinc oxide nanostructures: Growth, properties and applications, J. Phys. Condens. Matter. 16 (25) (2004) R829. https://doi.org/10.1088/0953-8984/16/25/R01
[9] X. Wang, Y. Ding, C. J. Summers, Z. L. Wang, Large-scale synthesis of six-nanometer-wide ZnO nanobelts. J. Phys. Chem. B 108 (26) (2004) 8773–8777. https://doi.org/10.1021/jp048482e
[10] A. H. Moharram, S. A. Mansour, M. A. Hussein, M. Rashad, Direct precipitation and characterization of ZnO nanoparticles. J. Nanomater. (2014) 2014. https://doi.org/10.1155/2014/716210
[11] Y. Peng, A. W. Xu, B. Deng, M. Antonietti and H. Co¨lfen, Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks, J. Phys. Chem. B, 110 (2006) 2988–2993. https://doi.org/10.1021/jp056246d
[12] K. Qi, J. Yang, J. Fu, G. Wang, L. Zhu, G. Liu, W. Zheng, Morphology-Controllable ZnO Rings: Ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties. CrystEngComm, 15 (34) (2013) 6729–6735. https://doi.org/10.1039/C3CE27007F
[13] R. R. Poolakkandy, M. M. Menamparambath, Soft-template-assisted synthesis: a promising approach for the fabrication of transition metal oxides, Nanoscale Adv. 2 (2020) 5015-5045. https://doi.org/10.1039/D0NA00599A
[14] Akter, M.; Satter, S. S.; Singh, A. K.; Rahman, M. M.; Mollah, M. Y. A.; Susan, M. A. B. H. Hydrophilic Ionic Liquid-Assisted Control of the Size and Morphology of ZnO Nanoparticles Prepared by a Chemical Precipitation Method, RSC Adv. 6 (94) (2016) 92040–92047. https://doi.org/10.1039/C6RA14955C
[15] J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. Zaleska-Medynska, Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis, Adv. Colloid Interface Sci., 227 (2016) 1-52. https://doi.org/10.1016/j.cis.2015.08.010
[16] N. Koch, Supramolecular Materials for Opto-Electronics, Royal Society of Chemistry 2014. https://doi.org/10.1039/9781782626947
[17] R. Paschotta, Optoelectronics in Encyclopedia of Laser Physics and Technology, Wiley, 2008.
[18] P. Kubelka, F. Munk, An Article on Optics of Paint Layers. Z. Tech. Phys, 12 (1931) 593–601.
[19] L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, A. Deepthy, B. Krishnan, Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J. Appl. Phys. 6 (2007) 102. https://doi.org/10.1063/1.2778637
[20] R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink, C. de Mello Donegá, Size effects on semiconductor nanoparticles, Nanoparticles, (2014) 13-51. https://doi.org/10.1007/978-3-662-44823-6_2
[21] H. Lin, C. P. Huang, W. Li, C. Ni, S. I. Shah, Y. H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol, Appl. Catal. B, 68 (2006) 1–11. https://doi.org/10.1016/j.apcatb.2006.07.018
[22] X. Wan, X. Liang, C. Zhang, X. Li, W. Liang, H. Xu, S. Lan, S. Tie, Morphology controlled syntheses of Cu-doped ZnO, tubular Zn (Cu) O and Ag decorated tubular Zn (Cu) O microcrystals for photocatalysis, Chem. Eng. J., 272 (2015) 58-68. https://doi.org/10.1016/j.cej.2015.02.089
[23] H.M. Hu, C.G. Deng, X.H. Huang, Hydrothermal growth of center-hollow multigonal star-shaped ZnO architectures assembled by hexagonal conic nanotubes, Mater. Chem. Phys. 121 (2010) 364–369. https://doi.org/10.1016/j.matchemphys.2010.01.044
[24] D.W. Chu, Y. Masuda, T. Ohji, K. Kato, Formation and photocatalytic application of ZnO nanotubes using aqueous solution, Langmuir 26 (2010) 2811–2815. https://doi.org/10.1021/la902866a
[25] Y. Tian, J.C. Li, H. Xiong, J.N. Dai, Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property, Appl. Surf. Sci. 258 (2012) 8431–8438. https://doi.org/10.1016/j.apsusc.2011.12.090
[26] Z. Jin, F. Wang, F. Wang, J. Wang, J. C. Yu, J. Wang, Metal nanocrystal‐embedded hollow mesoporous TiO2 and ZrO2 microspheres prepared with polystyrene nanospheres as carriers and templates, Adv. Funct. Mater., 23(17) (2013) 2137-2144. https://doi.org/10.1002/adfm.201202600
[27] H. Lu, L. Zhang, W. Xing, H. Wang, N. Xu, Preparation of TiO2 hollow fibers using poly (vinylidene fluoride) hollow fiber microfiltration membrane as a template, Mater. Chem. Phys.,94(2-3) (2005) 322-327. https://doi.org/10.1016/j.matchemphys.2005.05.008
[28] B. Réti, G. I. Kiss, T. Gyulavári, K. Baan, K. Magyari, K. Hernadi, Carbon sphere templates for TiO2 hollow structures: Preparation, characterization and photocatalytic activity, Catal. Today, 284 (2017) 160-168. https://doi.org/10.1016/j.cattod.2016.11.038
[29] C. Zhang, Y. Shi, Z. Fu, A facile method for the fabrication of SiO2 and SiO2/TiO2 hollow particles using Na2SO4 particles as templates, J. Sol-Gel Sci. Technol., 91(3) (2019) 431-440. https://doi.org/10.1007/s10971-019-05035-x
[30] G. Zhang, X. Xiao, B. Li, P. Gu, H. Xue, H. Pang, Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors, J. Mater. Chem. A, 5 (2017) 8155–8186. https://doi.org/10.1039/C7TA02454A
[31] C. M. Ghimbeu, J. M. Le Meins, C. Zlotea, L. Vidal, G. Schrodj, M. Latroche, C. Vix-Guterl, Controlled synthesis of NiCo nanoalloys embedded in ordered porous carbon by a novel soft-template strategy, Carbon, 67 (2014) 260–272. https://doi.org/10.1016/j.carbon.2013.09.089
[32] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Controlled Growth of ZnO Nanowires and Their Optical Properties, Adv. Func. Mater. (2002) 323–331. https://doi.org/10.1002/1616-3028(20020517)12:5%3C323::AID-ADFM323%3E3.0.CO;2-G
[33] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds, Nano Lett. 5 (7) (2005) 1231–1236. https://doi.org/10.1021/nl050788p
[34] Y. Zhai, Y. Dou, X. Liu, S. S. Park, C. S. Ha, D. Zhao, Carbon, 49 (2011) 545–555. https://doi.org/10.1016/j.carbon.2010.09.055
[35] N. Pal, A. Bhaumik, Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids, Adv. Colloid Interface Sci. 189–190 (2013) 21–41. https://doi.org/10.1016/j.cis.2012.12.002
[36] N. D. Petkovich, A. Stein, Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating, Chem. Soc. Rev. 42 (2013) 3721–3739. https://doi.org/10.1039/C2CS35308C
[37] V. M. Prida, V. Vega, J. Garc´ıa, L. Iglesias, B. Hernando, I. Minguez-Bacho, Electrochemical methods for template-assisted synthesis of nanostructured materials, (2015) Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications, pp. 3-39. https://doi.org/10.1016/B978-0-08-100164-6.00001-1
[38] X. Y. Liu, K. X. Wang, J. S. Chen, Template-directed metal oxides for electrochemical energy storage, Energy Storage Mater. 3 (2016) 1–17. https://doi.org/10.1016/j.ensm.2015.12.002
[39] A. Ahmed, R. Clowes, P. Myers, H. Zhang, Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability, J. Mater. Chem., 21 (2011) 5753–5763. https://doi.org/10.1039/C0JM02664F
[40] G. L. Drisko, A. Zelcer, V. Luca, R. A. Caruso, G. J. D. A. A. Soler-Illia, One-pot synthesis of hierarchically structured ceramic monoliths with adjustable porosity, Chem. Mater. 22 (2010) 4379–4385. https://doi.org/10.1021/cm100764e
[41] B. Platschek, A. Keilbach, T. Bein, Mesoporous structures confined in anodic alumina membranes, Adv. Mater. 23 (2011) 2395–2412. https://doi.org/10.1002/adma.201002828
[42] H. J. Liu, X. M. Wang, W. J. Cui, Y. Q. Dou, D. Y. Zhao, Y. Y. Xia, Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells, J. Mater. Chem., 20 (2010) 4223–4230. https://doi.org/10.1039/B925776D
[43] S. G. Hosseini, R. Ahmadi, A. Ghavi, A. Kashi, Synthesis and characterization of α-Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles, Powder Technol. 278 (2015) 316–322. https://doi.org/10.1016/j.powtec.2015.03.032
[44] M. Hu, A. A. Belik, M. Imura, K. Mibu, Y. Tsujimoto, Y. Yamauchi, Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers, Chem. Mater., 24 (2012) 2698–2707. https://doi.org/10.1021/cm300615s
[45] C. Mijangos, R. Hern´andez, J. Mart´ın, A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates, Prog. Polym. Sci. 54–55 (2016) 148–182. https://doi.org/10.1016/j.progpolymsci.2015.10.003
[46] A. H. Lu, F. Sch¨uth, Nanocasting: a versatile strategy for creating nanostructured porous materials, Adv. Mater. 18 (2006) 1793–1805. https://doi.org/10.1002/adma.200600148
[47] Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation, Angew. Chem., Int. Ed. 44 (2005) 7053–7059. https://doi.org/10.1002/anie.200501561
[48] W. Li, Z. Wu, J. Wang, A. A. Elzatahry, D. Zhao, A Perspective on Mesoporous TiO2 Materials, Chem. Mater. 26 (2014) 287–298. https://doi.org/10.1021/cm4014859
[49] J. Fan, S. W. Boettcher, C. K. Tsung, Q. Shi, M. Schierhorn, G. D. Stucky, Field-directed and confined molecular assembly of mesostructured materials: basic principles and new opportunities, Chem. Mater. 20 (2008) 909–921. https://doi.org/10.1021/cm702328k
[50] G. J. A. A. Soler-Illia, O. Azzaroni, Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks, Chem. Soc. Rev. 40 (2011) 1107–1150. https://doi.org/10.1039/C0CS00208A
[51] B. P. Bastakoti, Y. Li, S. Guragain, M. Pramanik, S. M. Alshehri, T. Ahamad, Z. Liu, Y. Yamauchi, Synthesis of mesoporous transition‐metal phosphates by polymeric micelle Assembly, Chem.– Eur. J. 22 (2016) 7463–7467. https://doi.org/10.1002/chem.201600435
[52] A. B. D. Nandiyanto, T. Ogi, F. Iskandar, K. Okuyama, Highly ordered porous monolayer generation by dual-speed spin-coating with colloidal templates, Chem. Eng. J. 167 (2011) 409–415. https://doi.org/10.1016/j.cej.2010.11.077
[53] B. Liu, M. Louis, L. Jin, G. Li, J. He, Co‐template directed synthesis of gold nanoparticles in mesoporous titanium dioxide, Chem. – Eur. J. 24 (2018) 9651–9657. https://doi.org/10.1002/chem.201801223
[54] L. Jin, B. Liu, M. E. Louis, G. Li, J. He, Highly crystalline mesoporous titania loaded with monodispersed gold nanoparticles: Controllable metal–support interaction in porous materials, ACS Appl. Mater. Interfaces, 12 (2020) 9617–9627. https://doi.org/10.1021/acsami.9b20231
[55] P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH, New York, 2003.
[56] Jr J.G. Huddleston, H.D. Willauer, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J.H. Davis, R.D. Rogers, Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction, Chem. Commun. (1998) 1765–1766. https://doi.org/10.1039/A803999B
[57] M.S. Miran, M. Hoque, T. Yasuda, K. Ueno, M. Watanabe, Key factor governing the physicochemical properties and extent of proton transfer of protic ionic liquids: pKa or structural chemistry? Phys. Chem. Chem. Phys. 21 (2019) 418–426. https://doi.org/10.1039/C8CP06973E
[58] H. Davy, Researches, Chemical and Philosophical. Biggs and Cottle, Bristol, 1800, 1800.
[59] G. Laus, G. Bentivoglio, H. Schottenberger, V. Kahlenberg, H. Kopacka, Ionic liquids: current developments, potential and drawbacks for industrial applications, Lenzinger Berichte, 84 (2005) 71-85.
[60] W. Ramsay, XXXIV. On picoline and its derivatives, Philos. Mag., Ser. 5(11) (1876) 269-281. https://doi.org/10.1080/14786447608639105
[61] M. M. Islam, S. Ahmed, M. S. Miran, M. A. B. H. Susan, Advances on potential-driven growth of metal crystals from ionic liquids, Progress in Crystal Growth and Characterization of Materials, 68(4) (2022) 100580. https://doi.org/10.1016/j.pcrysgrow.2022.100580
[62] E. Kianfar, S. Mafi, Ionic liquids: properties, application, and synthesis, Fin. Chem. Eng. 2 (2020) 22–31. https://doi.org/10.37256/fce.212021693
[63] H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species, J. Phys. Chem. B 108 (2004) 16593–16600. https://doi.org/10.1021/jp047480r
[64] H. Tokuda, K. Ishii, M.A.B.H. Susan, S. Tsuzuki, K. Hayamizu, M. Watanabe, Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures, J. Phys. Chem. B 110 (2006) 2833–2839. https://doi.org/10.1021/jp053396f
[65] H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation, J. Phys. Chem. B 109 (2005) 6103–6110. https://doi.org/10.1021/jp044626d
[66] C.A. Angell, Y. Ansari, Z. Zhao, Ionic Liquids: past, Present and Future, Faraday Discuss 154 (2012) 9–27. https://doi.org/10.1039/C1FD00112D
[67] S. Gabriel, J. Weiner, Ueber einige abkommlinge des propylamins, Berichte der deutschen chemischen gesellschaft 21 (1888) 2669–2679. https://doi.org/10.1002/cber.18880210288
[68] T.L. Greaves, C.J. Drummond, Protic ionic liquids: Properties and applications, Chem. Rev. 108 (2008) 206–237. https://doi.org/10.1021/cr068040u
[69] S. Khazalpour, M. Yarie, E. Kianpour, A. Amani, S. Asadabadi, J.Y. Seyf, M. Rezaeivala, S. Azizian, M.A. Zolfigol, Applications of phosphonium-based ionic liquids in chemical processes, J. Iranian Chem. Soc. 17 (2020) 1775–1917. https://doi.org/10.1007/s13738-020-01901-6
[70] M.S. Miran, H. Kinoshita, T. Yasuda, M.A.B.H. Susan, M. Watanabe, Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Brønsted acids, Phys. Chem. Chem. Phys. 14 (2012) 5178–5186. https://doi.org/10.1039/C2CP00007E
[71] H. Nakamoto, M. Watanabe, Brønsted acid–base ionic liquids for fuel cell electrolytes, Chem. Commun. 24 (2007) 2539–2541. https://doi.org/10.1039/B618953A
[72] A. Noda, M.A.B.H. Susan, S. Mitsushima, K. Hayamizu, M. Watanabe, Brønsted acid base ionic liquids as proton-conducting nonaqueous electrolytes, J. Phys. Chem. B 107 (2003) 4024–4033. https://doi.org/10.1021/jp022347p
[73] T. Tamura, K. Yoshida, T. Hachida, M. Tsuchiya, M. Nakamura, Y. Kazue, N. Tachikawa, K. Dokko, M. Watanabe, Physicochemical properties of glyme-Li salt complexes as a new family of room-temperature ionic liquids, Chem. Lett. 39 (2010) 53–55. http://dx.doi.org/10.1246/cl.2010.753
[74] T. Mandai, K. Yoshida, K. Ueno, K. Dokko, M. Watanabe, Criteria for solvate ionic liquids, Phys. Chem. Chem. Phys. 16 (2014) 8761–8772. https://doi.org/10.1039/C4CP00461B
[75] K. Ueno, K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, Glyme–lithium salt equimolar molten mixtures, concentrated solutions or solvate ionic liquids? J. Phys. Chem. B 116 (2012) 11323–11331. https://doi.org/10.1021/jp307378j
[76] R.F. Rodrigues, A.A. Freitas, J.N. Canongia Lopes, K. Shimizu, Ionic liquids and water: hydrophobicity vs. hydrophilicity, Molecules 26 (2021) 7159–7182. https://doi.org/10.3390/molecules26237159
[77] El Abedin, S. Z.; Endres, F. Ionic Liquids: The Link to High-Temperature Molten Salts? Acc. Chem. Res. 40(11) (2007) 1106–1113. https://doi.org/10.1021/ar700049w
[78] T.-P. Fellinger, A. Thomas, J. Yuan, M. Antonietti, “Cooking carbon with salt”: Carbon materials and carbonaceous frameworks from ionic liquids and poly(ionic liquid)s, Adv. Mater. 25(41) (2013) 5838-5855. https://doi.org/10.1002/adma.201301975
[79] J. Yuan, D. Mecerreyes, M. Antonietti, Poly(ionic liquid)s: An update. Prog. Polym. Sci. 38(7) (2013) 1009-1036. https://doi.org/10.1016/j.progpolymsci.2013.04.002
[80] S. Li, J. L. Banuelos, J. Guo, L. Anovitz, G. Rother, R. W. Shaw, P. C. Hillesheim, S. Dai, G. A. Baker, P. T. Cummings, Alkyl chain length and temperature effects on structural properties of pyrrolidinium-based ionic liquids: A combined atomistic simulation and small-angle X-ray scattering study, J. Phys. Chem. Lett. 3(1) (2012) 125-130. https://doi.org/10.1021/jz2013209
[81] K. Dong, S. J. Zhang, Hydrogen Bonds: A Structural Insight into Ionic Liquids, Chem. Eur. J. 18(10) (2012) 2748-2761. https://doi.org/10.1002/chem.201101645
[82] O. Russina, A. Triolo, L. Gontrani, R. Caminiti, Mesoscopic structural heterogeneities in room-temperature ionic liquids. J. Phys. Chem. Lett. 3(1) (2012) 27-33. https://doi.org/10.1021/jz201349z
[83] A. A. H. Padua, M. F. Gomes, J. N. A. C. Lopes, Molecular solutes in ionic liquids: A structural, perspective, Acc. Chem. Res. 40(11) (2007) 1087-1096. https://doi.org/10.1021/ar700050q
[84] K. Fumino, S. Reimann, R. Ludwig, Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces, Phys. Chem. Chem. Phys. 16(40) (2014) 21903-29. https://doi.org/10.1039/C4CP01476F
[85] T. Ueki, M. Watanabe, Macromolecules in ionic liquids: Progress, challenges, and opportunities, Macromolecules, 41(11) (2008) 3739-3749. https://doi.org/10.1021/ma800171k
[86] E. Husanu, V. Cappello, C. S. Pomelli, J. David, M. Gemmi, C. Chiappe, Chiral ionic liquid assisted synthesis of some metal oxides. RSC Adv. 7(2) (2017) 1154–1160. https://doi.org/10.1039/C6RA25736D
[87] L. Wang, L. Chang, B. Zhao, Z. Yuan, G. Shao, W. Zheng, Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids. Inorg. Chem., 47(5) (2008) 1443-1452. https://doi.org/10.1021/ic701094a
[88] K. Manjunath, L. S. R. Yadav, T. Jayalakshmi, V. Reddy, H. Rajanaika, G. Nagaraju, Ionic liquid assisted hydrothermal synthesis of TiO2 nanoparticles: photocatalytic and antibacterial activity, J. Mat. Res. Tech. 7(1) (2018) 7-13. https://doi.org/10.1016/j.jmrt.2017.02.001
[89] Y. Zhou, M. Antonietti, Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates, J. Am. Chem. Soc. 125 (2003) 14960-14961. https://doi.org/10.1021/ja0380998
[90] H. Liu, Y. Su, H. Hu, W. Cao, Z. Chen, An ionic liquid route to prepare mesoporous ZrO2–TiO2 nanocomposites and study on their photocatalytic activities, Adv. Powder Techol. 24 (2013) 683-688. https://doi.org/10.1016/j.apt.2012.12.007
[91] J. Xia, H. Li, Z. Luo, K. Wang, H. Shu, Y. Yan, Microwave-assisted synthesis of flower-like and leaflike CuO nanostructures via room-temperature ionic liquids, J. Phys. Chem. Solids, 70 (2009) 1461–1464. https://doi.org/10.1016/j.jpcs.2009.08.006
[92] J. Xia, H. Li, Z. Luo, K. Wang, H. Shu, Y. Yan, Ionic liquid-assisted hydrothermal synthesis of three-dimensional hierarchical CuO peachstone-like architectures, Appl. Surface Sci. 256 (2010) 1871-1877. https://doi.org/10.1016/j.apsusc.2009.10.022
[93] V. Taghvaei, A. Habibi-Yangjeh, M. Behboudnia, Preparation and characterization of SnO2 nanoparticles in aqueous solution of [EMIM][EtSO4] as a low cost ionic liquid using ultrasonic irradiation, Powder Technol. 195 (2009) 63-67. https://doi.org/10.1016/j.powtec.2009.05.023
[94] S. Z. El Abedin, F. Endres, Electrodeposition of nanocrystalline silver films and nanowires from the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate, Electrochim. Acta, 54 (2009) 5673-5677. https://doi.org/10.1016/j.electacta.2009.05.005
[95] Z. Li, Z. Liu, J. Zhang, B. Han, J. Du, Y. Gao, T. Jiang, Synthesis of single-crystal gold nanosheets of large size in ionic liquids, J. Phys. Chem. B, 109 (2005) 14445-14448. https://doi.org/10.1021/jp0520998
[96] A. Imanishi, M. Tamura, S. Kuwabata, Formation of Au nanoparticles in an ionic liquid by electron beam irradiation, Chem. Commun. 13 (2009) 1775-1777. https://doi.org/10.1039/B821303H
[97] B. Sarmah, R. Srivastava, Highly efficient and recyclable basic ionic liquids supported on SBA-15 for the synthesis of substituted styrenes, carbinolamides, and naphthopyrans, Molecular Catalysis, 427 (2017) 62-72. https://doi.org/10.1016/j.molcata.2016.11.030
[98] S. K. Panja, S. Saha, Recyclable, magnetic ionic liquid bmim [FeCl 4]-catalyzed, multicomponent, solvent-free, green synthesis of quinazolines, RSC Adv., 3(34) (2013) 14495-14500. https://doi.org/10.1039/C3RA42039F
[99] J. Goldberger, D. J. Sirbuly, M. Law, P. Yang, ZnO nanowire transistors, J. Phys. Chem. B, 109 (2004) 9–14. https://doi.org/10.1021/jp0452599
[100] M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts, J. Phys. Chem. B, 107 (2002) 659–663. https://doi.org/10.1021/jp0271054
[101] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, M. Meyyappan, Single crystal nanowire vertical surround-gate field-effect transistor, Nano Lett., 4(7) (2004) 1247-1252. https://doi.org/10.1021/nl049461z
[102] G. Cui, M. Zhang, G. Zou, Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p–n horizontal-multi-layer heterostructure for room temperature H2S sensor application, Sci. Rep. 3 (2013) 1–8.
[103] T. Minami, Y. Nishi, T. Miyata, High-Efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer, Appl. Phys. Express, 6 (2013) 044101. https://doi.org/10.7567/APEX.6.044101
[104] S. Brittman, Y. Yoo, N. P. Dasgupta, S. Kim, B. Kim, P. Yang, Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells, Nano Lett., 14(8) (2014) 4665-4670. https://doi.org/10.1021/nl501750h
[105] R. Martins, P. Barquinha, L. Pereira, N. Correia, G. Gonçalves, I. Ferreira, E. Fortunato, Write-erase and read paper memory transistor, Appl. Phys. Lett., 93(20) (2008) 203501. https://doi.org/10.1063/1.3030873
[106] K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, H. Hosono, Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive X-ray photoelectron spectroscopy, Appl. Phys. Lett., 92(20) (2008) 202117. https://doi.org/10.1063/1.2927306
[107] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nature Mater. 4 (2005) 455–459. https://doi.org/10.1038/nmat1387
[108] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer, Adv. Mater. 23 (2011) 1679–1683. https://doi.org/10.1002/adma.201004301
[109] H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, Y. Yang, Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Appl. Phys. Lett. 92 (2008) 173303. https://doi.org/10.1063/1.2918983
[110] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, Air‐stable polymer electronic devices, Adv. Mater., 19(18) (2007) 2445-2449. https://doi.org/10.1002/adma.200602653
[111] S. K. Hau, H. Yip, N. S. Baek, J. Zou, K. O’Malley, A. K-Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Appl. Phys. Lett., 92(25) (2008) 225. https://doi.org/10.1063/1.2945281
[112] T. Alammar, A. V. Mudring, Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid, Mater. Lett., 63(9-10) (2009) 732-735. https://doi.org/10.1016/j.matlet.2008.12.035
[113] M. Sabbaghan, A. S. Shahvelayati, K. Madankar, CuO nanostructures: optical properties and morphology control by pyridinium-based ionic liquids, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 135 (2015) 662-668. https://doi.org/10.1016/j.saa.2014.07.097
[114] Y. Min, K. Zhang, L. Chen, Y. Chen, Y. Zhang, Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties, Diam. Relat. Mater., 26 (2012) 32-38. https://doi.org/10.1016/j.diamond.2012.04.003