Nanomaterials as Photocatalyst


Nanomaterials as Photocatalyst

Ajay K. Potbhare, Pavan R. Bhilkar, Sachin T. Yerpude, Rohit S. Madankar, Sampat R. Shingda, Rameshwar Adhikari, Ratiram G. Chaudhary

Clean and drinkable water is a big challenge in 21st century. A variety of organometallic compounds have been utilized by human being for rapid civilization and modernization. These hazardous waste discharges from the industries and directly mixed with environment especially in water reservoir and adulterate water, which is responsible for many contagious diseases. To vanquish this issue we needed an eco-friendly, safe, cost-effective nanomaterials for the degradation and removal of noxious waste. In this chapter emphasized on different nanomaterials as photocatalyst for photocatalytic performances, also critically discussed applicability of different nanomaterials for photocatalytic process comprising with types photocatalyst, light source, scavengers, trapping agents, photodegradation activity mechanism and its utility. Moreover, removal of toxic dyes, pharmaceutical drugs, agrochemical waste, heavy metal ions, and phenolic compounds have been discussed.

Nanomaterials, Photocatalysts, Photodegradation, Pharmaceutical Drugs, Phenolic Compounds

Published online , 31 pages

Citation: Ajay K. Potbhare, Pavan R. Bhilkar, Sachin T. Yerpude, Rohit S. Madankar, Sampat R. Shingda, Rameshwar Adhikari, Ratiram G. Chaudhary, Nanomaterials as Photocatalyst, Materials Research Foundations, Vol. 148, pp 304-333, 2023


Part of the book on Applications of Emerging Nanomaterials and Nanotechnology

[1] Li, Zhuo & Yao, Yagang & Lin, Ziyin & Moon, Kyoung-sik & Lin, Wei & Wong, C.P.. (2010). Ultrafast, dry microwave synthesis of graphene sheets. Journal of Materials Chemistry, 20, (2010) 4781-4783.
[2] G. Demazeau, Solvothermal processes: a route to the stabilization of new materials J. Mater. Chem. 9 (1999) 15-18.
[3] H. Wang, J. T. Robinson, X. Li, H. Dia, Simultaneous Nitrogen Doping and Reduction of Graphene Oxide J. Am. Chem. Soc. 131 (2009) 9910-9911.
[4] Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, K. P. Loh, Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of unable Optical Limiting Properties Chem. Mater. 21 (2009) 2950- 2956.
[5] R. Wang, Y. Wang, C. Xu, J. Sun, L. Gao, Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms., RSC Adv. 3 (2013) 1194-1200.
[6] S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents., ACS Nano, 4, (2010) 3845-3852.
[7] D. Zhou, Q. -Y. Cheng, B. -H. Han, Solvothermal synthesis of homogeneous graphene dispersion with high concentration. .Carbon, 49 (2011) 3920-3927.
[8] J. Xiao, W. Lv, Z. Xie, Environment-friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π-π interaction. J. Mater. Chem. A 4 (2016) 12126- 12135
[9] O. A. Rahman, V. Chellasamy, N. Ponpandian, S. Amirthapandian, B. Panigrahi, P. Thangadurai, RSC Adv. 4 (2014) 56910-56917.
[10] M. Fernandez-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions J. Phys. Chem. C 114 (2010) 6426- 32.
[11] H. L. Guo, X. F. Wang, Q. Y. Qian, A Green Approach to the Synthesis of Graphene Nanosheets., ACS Nano 3 (2009) 2653-2659.
[12] C. Bosch-Navarro, E. Coronado, C. Martí-Gastaldo, J. Sánchez-Royo, M.G. Gómez, Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions., Nanoscale 4 (2012) 3977-82.
[13] Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. rep. (2014) 4-15.
[14] S. Liu, J. Tian, L. Wang, X. Sun, A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection, Carbon 49 (2011) 3158-64.
[15] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Adv. Mater. 20 (2008) 4490-3
[16] C. Chua, A. Ambrosi, M. Pumera, Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide., J. Mater. Chem. 22 (2012) 11054-61
[17] D.N. Tran, S. Kabiri, D. Losic, A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids., Carbon 76 (2014) 193-202.
[18] A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide., J. Mater. Chem. 21 (2011) 10907-14.
[19] D. Wan, C. Yang, T. Lin, Y. Tang, M. Zhou, Y. Zhong,. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications. ACS Nano 6 (2012) 9068-78.
[20] X. Mei, J. Ouyang, Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49 (2011) 5389-97
[21] M. Aunkor, I. M. Mahbubul, R. Saidur, H. Metselaar The green reduction of graphene oxide., RSC Adv. 6 (2016) 27807-27828
[22] M. Khan, A. Al-Marri, M. Khan, N. Mohri, S. Adil, A. Al-Warthan, M. Siddiqui, H. Alkhathlan, R. Berger, W. Tremel, Ismail Cer. Internat. l 45 (2019) 23857-23868
[23] N. Elavarasan, S. Prakasha, K. Kokilaa, C. Thirunavukkarasuc, V. Sujatha, New J. Chem. 44 (2020) 2166-2179
[24] J. Li, G. Xiao, C. Chen, R. Li, D. Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer., J. Mater. Chem. A. 1 (2013) 1481-87.
[25] T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, A green approach for the reduction of graphene oxide by wild carrot root. Carbon, 50 (2012) 914-921.
[26] G. Wang, F. Qian, C. Saltikov, Y. Jiao, Y. Li, Nano Res. 4 (2011) 563-70.
[27] A. K. Potbhare, M. S. Umekar, P. B. Chouke, M. B. Bagade, S. K. Tarik Aziz, A. A. Abdala, R. G. Chaudhary, Bioinspired graphene-based silver nanoparticles: Fabrication, characterization and antibacterial activity. Materials Today: Proceedings 29 (2020) 720-725.
[28] O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie, E. Ghasemi, Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66 (2014) 395-406.
[29] D. Suresh, H. Nagabhushana, S. Sharma, Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties.Mater. Lett. 142 (2015) 4-6.
[30] B. Feng, J. Xie, C. Dong, S. Zhang, G. Cao, X. Zhao, From graphite oxide to nitrogen and sulfur co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs.RSC Adv. 4 (2014) 17902-17907.
[31] O. G. Akhavan, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50 ( 2012) 1853-60
[32] P. Khanra, T. Kuila, N.H. Kim, S.H. Bae, D.-s. Yu, J.H. Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J. 183 (2012) 526-33.
[33] Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep. 4 (2014) 4684.
[34] H.-J. Chu, C.-Y. Lee, N.-H. Tai., Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon, 80 (2014) 725-733.
[35] N.Serpone, A.V. Emeline, Semiconductor Photocatalysis-Past, Present, and Future Outlook. J. Phys. Chem. Lett. 3 (2012),673-677.
[36] S. Sato, Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett. 123 (1986), 126-128.
[37] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y.Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science,293 (2001), 269-271.
[38] J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, Fluorine- and niobium-doped TiO2: Chemical and spectroscopicproperties of polycrystalline n-type-doped anatase. J. Phys.Chem. C,118 (2014), 8462-8473.
[39] A.M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, S. Agnoli, G. Granozzi, E. Finazzi, C. Di Valentiny, G. Pacchioni, Thenature of defects in fluorine-doped TiO2. J. Phys. Chem. C, 112(2008), 8951-8956.
[40] C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, N-doped TiO2: Theory and experiment. Chem. Phys., 339(2007), 44-56.
[41] U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep.,48 (2003), 53-229.
[42] N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Müller, E. Spiecker, P. Schmuki, Black TiO2 Nanotubes:Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Lett., 14(2014), 3309-3313.
[43] P. Garcia-Muñoz, F. Fresno, J. Ivanez, D. Robert, N. Keller, Activity enhancement pathways in LaFeO3@TiO2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water. J. Hazard. Mater., 400(2020), 123099.
[44] C. Ling, C. Yue, R. Yuan, J. Qiu, F.Q. Liu, J.J. Zhu, Enhanced removal of sulfamethoxazole by a novel composite of TiO2 nanocrystals in situ wrapped-Bi2O4 microrods under simulated solar irradiation. Chem. Eng. J., 384(2020), 123278.
[45] M. Tobajas, C. Belver, J.J. Rodriguez, Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chem. Eng. J., 309(2017), 596-606.
[46] S. I. Mogal, V.G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P.A. Joshi, D.O. Shah, Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties. Industrial & Engineering Chemistry Research, 53(14) (2014), 5749-5758.
[47] E. Kowalska, M. Janczarek, L. Rosa, S. Juodkazis, B. Ohtani, Mono-and bi-metallic plasmonic photocatalysts for degradation of organic compounds under UV and visible light irradiation. Catalysis Today, 230(2014),131-137.
[48] A.T. Montoya, E. G. Gillan, Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2. ACS omega, 3(3) (2018). 2947-2955.
[49] R. Dholam, N. Patel, M. Adami, A. Miotello, Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy, 34(13) (2009). 5337-5346.
[50] S. E. Salas, B. S. Rosales, H. de Lasa,. Quantum yield with platinum modified TiO2 photocatalyst for hydrogen production. Applied Catalysis B: Environmental, 140 (2013) 523-536.
[51] A. Manivel, S. Naveenraj, P.S. Sathish Kumar, S. Anandan, CuO-TiO2 nanocatalyst for photodegradation of acid red 88 in aqueous solution. Science of Advanced Materials, 2(1) (2010), 51-57.
[52] G. Liu, X. Zhang, Y. Xu, X. Niu, L. Zheng, X. Ding,. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities. Chemosphere, 59(9) (2005), 1367-1371.
[53] H. Wang, S. Cao, Z. Fang, F. Yu, Y. Liu, X. Weng, Z. Wu,. CeO2 doped anatase TiO2 with exposed (001) high energy facets and its performance in selective catalytic reduction of NO by NH3. Applied Surface Science, 330 (2015), 245-252.
[54] J. G. Mahy, S. D. Lambert, R. G. Tilkin, C. Wolfs, D. Poelman, F. Devred, S. Douven,. Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts: Highly efficient powders and films for water depollution. Materials Today Energy, 13 (2019), 312-322.
[55] L. Gnanasekaran, R. Hemamalini, S. Rajendran, J. Qin, M. L. Yola, N. Atar, F. Gracia,. Nanosized Fe3O4 incorporated on a TiO2 surface for the enhanced photocatalytic degradation of organic pollutants. Journal of Molecular Liquids, 287 (2019), 110967.
[56] H. Kong, J. Song, J. Jang,. Photocatalytic antibacterial capabilities of TiO2− biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environmental science & technology, 44(14) (2010), 5672-5676.
[57] D. Tekin, D. Birhan, H. Kiziltas,. Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Materials Chemistry and Physics, 251 (2020), 123067.
[58] L. Zhang, P. Liu, Z. Su,. Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polymer degradation and stability, 91(9) (2006), 2213-2219.
[59] R. Saravanan, J. Aviles, F. Gracia, E. Mosquera, V. K. Gupta,. Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. International journal of biological macromolecules, 109 (2018), 1239-1245.
[60] K. Fischer, P. Schulz, I. Atanasov, A. Abdul Latif, I. Thomas, M. Kühnert, A. Prager, J. Griebel, A. Schulze,. Synthesis of high crystalline TiO2 nanoparticles on a polymer membrane to degrade pollutants from water. Catalysts, 8(9) (2018), 376.
[61] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology. A Technology for Crystal Growth and Materials Processing. Noyes, New York 96 (2001).
[62] I. Medina-Ramı’rez, J. O. Carneiro,V. Teixeira, A. L. Portinha, L. Dupa’k, A. Magalhaes, P. Coutinho, Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering. Vacuum, 78 (2005),37-46.
[63] J. O. Carneiro, V. Teixeira, A. L. Portinha, A. Magalhaes, P. Coutinho, C. J. Tavares, R. Newton, Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications. Mater Sci Eng B, 138 (2007),144-150.
[64] K. G. Chandrappa, T. V. Venkatesha, Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles. Nano-Micro Lett, 4 (2012),14-24.
[65] Y. C. Chen, S. L. Lo, Effects of operational conditions of microwave-assisted synthesis on morphology and photocatalytic capability of zinc oxide. Chem Eng J, 170 (2011),411-418.
[66] Z. Chen, W. Li, W. Zeng, M. Li, J. Xiang, Z. Zhou, J. Huang, Microwave hydrothermal synthesis of nanocrystalline rutile. Mater Lett, 62 (2008),4343-4344.
[67] B. Chen, J. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and super-capacitors. Langmuir, 29 (2013), 5911-5919.
[68] J. Choi, S. H. Cho, T. H. Kim, S. W. Lee, Comparison of sonochemistry method and sol-gel method for the fabrication of TiO2 powder. Mater Sci Forum, 695 (2011), 109-112.
[69] R. N. Geyde, Organic synthesis using microwaves in homogeneous media. In: Loupy A (ed) Microwaves in organic synthesis. Wiley-VCH, Weinheim, (2002), 115-146
[70] C. Gionco, A. Battiato, E. Vittone, M. C. Paganini, E. Giamello, Structural and spectroscopic properties of high temperature prepared ZrO2-TiO2 mixed oxides. J Solid State Chem, 201 (2013) 222-228.
[71] C. Han, R. Luque, D. D. Dionysiou, Facile preparation of controllable size monodisperse anatase titania nanoparticles. Chem Commun, 48 (2012) 1860-1862.
[72] S. Horikoshi, S. Sakamoto, N. Serpone, Formation and efficacy of TiO2/AC composites prepared under microwave irradiation in the photoinduced transformation of the 2-propanol VOC pollutant in air. Appl Catal B Environ, 140-141 (2013), 646-665.
[73] L. Hu, K. Huo, R. Chen, B. Gao, J. Fu, P. K. Chu, Recyclable and high-sensitivity electrochemical biosensing platform composed of carbon-doped TiO2 nanotube arrays. Anal Chem, 83 (2011), 8138-8144.
[74] N. Jin, Y. Yang, X. Luo, Z. Xia, Development of CVD Ti-containing films. Prog Mater Sci, 58 (2013), 1490-1533.
[75] Y. S. Jung, K. H. Kim, T. Y. Jang, Y. Tak, S. H. Baeck, Enhancement of photocatalytic properties of Cr2O3-TiO2 mixed oxides prepared by sol-gel method. Curr Appl Phys, 11 (2011), 358-361.
[76] C. O. Kappe, Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology. Acc Chem Res, 46(7) (2013), 1579-1587.
[77] H. J. Kitchen, S. R. Vallance, J. L. Kennedy, N. Tapia-Ruiz, L. Carassiti, A. Harrison, A.G. Whittaker, T. D. Drysdale, S. W. Kingman, D. H. Gregory, Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. Chem Rev, 114 (2014),1170- 1206.
[78] S. Komarneni, R. K. Rajha, H. Katsuki, Microwave-hydrothermal processing of titanium dioxide. Mater Chem Phys, 61(1999), 50-54.
[79] S. Komarneni, S. Esquivel, Y. D. Noh, S. Sitthisang, J. Tantirungrotechai, H. Li, S. Yin, T. Sato, H. Katsuki, Novel synthesis of nanophase anatase under conventional-and microwave-hydrothermal conditions: DeNOx properties. Ceram Int, 40 (2014), 2097-2102.
[80] X. Li, L. Wang, X. Lu, Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. J Hazard Mater, 177 (2010), 639-647.
[81] L. Li, X. Qin, G. Wang, L. Qi, G. Du, Z. Hu, Synthesis of anatase TiO2 nanowires by modifying TiO2 nanoparticles using the microwave heating method. Appl Surf Sci, 257 (2011), 8006-8012.
[82] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci, 60 (2014), 208-337.
[83] Umekar, M. S., Bhusari, G. S., Potbhare, A. K., Mondal, A., Kapgate, B. P., Desimone, M. F., & Chaudhary, R. G. (2021). Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications. Current Pharmaceutical Biotechnology, 22(13), 1759-1781.
[84] W. Zhu, G. Wang, X. Hong, X. Shen, D. Li, X. Xie, Metal nanoparticle chains embedded in TiO2 nanotubes prepared by one-step electrodeposition. Electrochim Acta, 55 (2009), 480-484.
[85] L. Zhu, K. Liu, H. Li, Y. Sun, M. Qiu, Solvothermal synthesis of mesoporous TiO2 microspheres and their excellent photocatalytic performance under simulated sunlight irradiation. Solid State Sci, 20 (2013), 8-14.
[86] S. Thangavel, G. Venugopal, K. Jae. Enhanced photocatalytic efficacy of organic dyes using β-tin tungstate-reduced graphene oxide nanocomposites. Mater. Chem. Phy. 145 (2014), 108-115.
[87] PB Chouke, T Shrirame, AK Potbhare, A Mondal, AR Chaudhary, S. Mondal, R. Sharma, RG Chaudhary, Bioinspired metal/metal oxide nanoparticles: A road map to potential applications, Materials Today Advances, 16 (2022) 100314.
[88] P.B. Chouke, A.K. Potbhare, N.P. Meshram, M.M. Rai, K.M. Dadure, K Chaudhary, A.R. Rai, M Desimone, R.G. Chaudhary, D.T. Masram, ACS Omega, 7 (2022) 6869−6884.
[89] G. Kahrilas, L. Wally, S. Fredrick, M. Hiskey, A. Prieto, J. Owens, ACS Sustain. Chem. Eng., 2 (2014) 367-376.
[90] R.G. Chaudhary, P.B. Chouke, R. Bagade, A.K. Potbhare, K.M. Dadure, Molecular docking and antioxidant activity of Cleome simplicifolia assisted synthesis of cerium oxide nanoparticles, Mater. Today: Proc. 29 (2020) 1085-1090.
[91] R.G. Chaudhary, V. Sonkusare, G. Bhusari, A. Mondal, D. Shaik, H.D. Juneja. microwave-mediated synthesis of spinel cual2o4 nanocomposites for enhanced electrochemical and catalytic performance. Res. Chem. Intermed., 2017, 44, 239-2060.
[92] R.G. Chaudhary, JA. Tanna, N.V. Gandhare, A.R. Rai, S.Yerpude, H.D. Juneja. Copper nanoparticles catalyzed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity. J. Expt. Nanosci., 2016, 11, 884-890
[93] R.G. Chaudhary, J.A. Tanna, N.V. Gandhare, A.R. Rai, H.D. Juneja. Histidine Capped ZnO Nanoparticles: An efficient synthesis, characterization and effective antibacterial activity. BioNanoScience, 2015, 5, 123-134
[94] M. S. Umekar, G. S. Bhusari, A. K. Potbhare, R.G. Chaudhary, Decorated Reduced Graphene Oxide Nanohybrid by Clerodendrum Infortunatum, Emer. Mater. Res. 10 (2021) 75-84.
[95] K. M. Dadure, A.K. Potbhare, D. Mahapatra, A. Haldar, R.G. Chaudhary, Utilization of Mother Nature’s Gift for the Biofabrication of Copper/ Copper Oxide Nanoparticles for Therapeutic Applications, Jord. J. Phy. 15 (2022) 67-79.
[96] P. B. Chouke, A. K. Potbhare, G. S. Bhusari, S. Somkuwar, R.K. Mishra, RG Chaudhary, Green fabrication of Zinc oxide nanospheres by Aspidopterys Cordata for effective antioxidant and antibacterial activity, Adv. Mater. Lett. 10 (2019) 355-360.
[97] A.K. Potbhare, R.G. Chaudhary, P.B. Chouke, S.T. Yerpude, V. Sonkusare, A. Mondal, A.R Rai, H.D. Juneja, Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus Reticulatus/Conyza Bonariensis and its antioxidant/antibacterial assays, Mater. Sci. Eng. C 99 (2019) 783-793.
[98] M. S. Umekar, R.G. Chaudhary, G. S. Bhusari, A Mondal, A.K. Potbhare, M Sami, Bioinspired graphene-based silver nanoparticles: Fabrication, characterization and antibacterial activity, Mater. Today: Proc. 29 (2020) 709-714.
[99] A.K. Potbhare, R.G. Chaudhary, M. S. Umekar, P.B. Chouke, M.B. Bagade, SK. Aziz, A Abdala, Bioinspired graphene-based silver nanoparticles: Fabrication, characterization and antibacterial activity, Mater. Today: Proc. 29 (2020) 720-725.
[100] Umekar, M. S., Bhusari, G. S., Bhoyar, T., Devthade, V., Kapgate, B. P., Potbhare, A. P., Chaudhary R. G., & Abdala, A. A. (2023). Graphitic Carbon Nitride-based Photocatalysts for Environmental Remediation of Organic Pollutants. Current Nanoscience, 19(2), 148-169.
[101] A. Isari, A. Payan, M. Fattahi, S. Jorfi, B. Kakavandi. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 462 (2018), 549-564.
[102] U. Gulati, R. Chinna, D. Rawat, Reduced Graphene Oxide Supported Copper Oxide Nanocomposites from a Renewable Copper Mineral Precursor: A Green Approach for Decarboxylative C(sp3)-H Activation of Proline Amino Acid To Afford Value-Added Synthons. ACS Sustain. Chem. Eng. 6 (2018), 10039-10051.
[103] C. T. Chou, F. H. Wang, J. Vac. Sci. Technol. 36 (2018) 122-131.
[104] Chouke, P. B., Dadure, K. M., Potbhare, A. K., Bhusari, G. S., Mondal, A., Chaudhary, K., … & Masram, D. T. (2022). Biosynthesized δ-Bi2O3 Nanoparticles from Crinum viviparum Flower Extract for Photocatalytic Dye Degradation and Molecular Docking. ACS Omega 7 (2022) 20983-20993.
[105] Sonkusare, V. N., Chaudhary, R. G., Bhusari, G. S., Mondal, A., Potbhare, A. K., Mishra, R. K., … & Abdala, A. A. (2020). Mesoporous octahedron-shaped tricobalt tetroxide nanoparticles for photocatalytic degradation of toxic dyes. ACS Omega, 5(14), 7823-7835.
[106] M. Khan, M. Khan, M. Cho, Recent progress of metal-graphene nanostructures in photocatalysis. Nanoscale 10 (2018), 9427-9440.
[107] X. Li, J. Yu. M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45 (2016), 2603-2636.
[108] X. Lü, J. Shen, J. Wang, Z. Cui, J. Xie, Highly efficient visible-light photocatalysts: reduced graphene oxide and C 3 N 4 nanosheets loaded with Ag nanoparticles. RSC Adv. 5 (2015), 15993-15999.
[109] A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, M. A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 4 (2014), 37003-37026.
[110] N. Saqib, R. Adnan, I. Shah, A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater. Environ. Sci. Poll. Res. 23 (2016), 15941-15951.10.1007/s11356-016-6984-7
[111] R. Molinari, C. Lavorato. P. Argurio, Photocatalytic reduction of acetophenone in membrane reactors under UV and visible light using TiO2 and Pd/TiO2 catalysts. Chem. Eng. J. 274 (2015), 307-316.
[112] H. M. El-Bery, Y. Matsushita. A. Abdel-moneim, Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites. Appl. Surf. Sci. 423 (2017), 185-196.
[113] Ocampo-Pérez, R., Sánchez-Polo, M., Rivera-Utrilla, J., & Leyva-Ramos, R. (2011). Enhancement of the catalytic activity of TiO2 by using activated carbon in the photocatalytic degradation of cytarabine. Applied Catalysis B: Environmental, 104(1-2), 177-184.
[114] Sonkusare, V. N., Chaudhary, R. G., Bhusari, G. S., Rai, A. R., & Juneja, H. D. (2018). Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles. Nano-Structures & Nano-Objects, 13, 121-131.
[115] Chaudhary, R. G., Potbhare, A. K., Aziz, S. T., Umekar, M. S., Bhuyar, S. S., & Mondal, A. (2021). Phytochemically fabricated reduced graphene Oxide-ZnO NCs by Sesbania bispinosa for photocatalytic performances. Materials Today: Proceedings, 36, 756-762.
[116] K. Rahimi, H. Zafarkish, A. Yazdani, Mater, Des. 144 (2018) 214-221.
[117] Chaudhary, R. G., Sonkusare, V., Bhusari, G., Mondal, A., Potbhare, A., Juneja, H., D, Abdala, A., & Sharma, R. (2023). Preparation of mesoporous ThO2 nanoparticles: Influence of calcination on morphology and visible-light-driven photocatalytic degradation of indigo carmine and methylene blue. Environmental Research, 115363.
[118] R. Elshypany, H. Selim, K. Zakaria, A. H. Moustafa, S. A. Sadeek, S. I. Sharaa, P. Raynaud, A. A. Nada, Molecules. 14 (2021) 2269.
[119] S. Hamed, K. Hossain, S. Masoud, S. Niasari, D. Mortazavi, J. Coll. Interface Sci. 498 (2017) 423-432.
[120] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li. ACS Nano. 4 (2010) 380-386.
[121] S. Chandra, P. Das, S. Bag P. Pramanik, P. Pramanik. Mater. Sci. Eng.B 177 (2012) 855-861
[122] Yongsheng Fu and Xin Wang, Magnetically Separable ZnFe2O4-Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Ind. Eng. Chem. Res. 2011, 50, 12, 7210-7218.
[123] M. Shang, W. Wang, L. Zhou, S. Sun, W. Yin. J. Hazard. Mater. 172 (2009) 338-344.
[124] S. Shanavas, A. Priyadharsan, E.I. Gkanas, R. Acevedo, P.M. Anbarasan (2019) High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: Kinetics, intermediates and mechanism, Journal of Industrial and Engineering Chemistry, 72, 512-528
[125] B. Li, H. Cao. ZnO@graphene composite with enhanced performance for the removal of dye from water.,J. Mater. Chem. 21 (2011), 3346.
[126] S. Lathasree, A.N. Rao, B. SivaSankar, V. Sadasivam, K. Rengaraj. Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. J. Mol. Catal. A: Chem. 223 (2004), 101.
[127] G. Malekshoar, K. Pal, Q. He, A. Yu, A. K. Ray, Enhanced Solar Photocatalytic Degradation of Phenol with Coupled Graphene-Based Titanium Dioxide and Zinc Oxide., Ind. Eng. Chem. Res. 53 (2014), 18824-18832.
[128] Chang, L. F., Doong, R. A. (2014). Cu-TiO2 nanorods with enhanced ultraviolet-and visible-light photoactivity for bisphenol A degradation. Journal of hazardous materials, 277, 84-92..