Application of machine learning models to predict ecotoxicity of ionic liquids (Vibrio fischeri) using VolSurf principal properties

Application of machine learning models to predict ecotoxicity of ionic liquids (Vibrio fischeri) using VolSurf principal properties

GRACE Amabel Tabaaza, BENNET Nii Tackie-Otoo, DZULKARNAIN B Zaini, BHAJAN Lal

download PDF

Abstract. Owing to the rapid growth in IL synthesis due to feasible cation–anion combinations, knowledge of their toxicity is pertinent for their successful application. Toxicity information measurement of various ILs on a broad spectrum of conditions through experimental techniques is way demanding on time, resources, and is at times impractical. Various research works have been performed in Quantitative Structure Activity/Property Relationship (QSAR/QSPR) for IL toxicity prediction. In this study, ML models have been trained and tested on Vibrio fischeri toxicity data set using in silico principal properties (PPs) as descriptors. Deploying this properties aid in considering both the effect of cations and anions on Vibrio fischeri toxicity prediction. Among the models trained, the Random Forest model proved to be the most precise nevertheless, decision tree model was the most accurate and consistent. Considering the importance of the descriptors to Vibrio fischeri toxicity selection techniques and model optimization.

Ionic liquids, Vibrio Fischeri, Toxicity, Machine learning, QSPR/QSAR and Principal Properties

Published online 5/20/2023, 14 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: GRACE Amabel Tabaaza, BENNET Nii Tackie-Otoo, DZULKARNAIN B Zaini, BHAJAN Lal, Application of machine learning models to predict ecotoxicity of ionic liquids (Vibrio fischeri) using VolSurf principal properties, Materials Research Proceedings, Vol. 29, pp 234-247, 2023


The article was published as article 27 of the book Sustainable Processes and Clean Energy Transition

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] F. D’Anna, S. Marullo, P. Vitale, and R. Noto, “Synthesis of aryl azides: A probe reaction to study the synergetic action of ultrasounds and ionic liquids,” Ultrason. Sonochem., vol. 19, no. 1, pp. 136–142, 2012,
[2] N. Taccardi et al., “Gallium-rich Pd-Ga phases as supported liquid metal catalysts,” Nat. Chem., vol. 9, no. 9, pp. 862–867, 2017,
[3] M. Tariq, D. Rooney, E. Othman, S. Aparicio, M. Atilhan, and M. Khraisheh, “Gas hydrate inhibition: A review of the role of ionic liquids,” Ind. Eng. Chem. Res., vol. 53, no. 46, pp. 17855–17868, 2014,
[4] M. El-Harbawi, “Toxicity Measurement of Imidazolium Ionic Liquids Using Acute Toxicity Test,” Procedia Chem., vol. 9, no. December 2014, pp. 40–52, 2014,
[5] C. B. Bavoh, O. Nashed, A. N. Rehman, N. A. A. B. Othaman, B. Lal, and K. M. Sabil, “Ionic Liquids as Gas Hydrate Thermodynamic Inhibitors,” Ind. Eng. Chem. Res., vol. 60, no. 44, pp. 15835–15873, 2021,
[6] C. B. Bavoh, T. N. Ofei, and B. Lal, “Investigating the Potential Cuttings Transport Behavior of Ionic Liquids in Drilling Mud in the Presence of sII Hydrates,” Energy and Fuels, vol. 34, no. 3, pp. 2903–2915, 2020,
[7] E. E. L. Tanner, R. R. Hawker, H. M. Yau, A. K. Croft, and J. B. Harper, “Probing the importance of ionic liquid structure: A general ionic liquid effect on an SNAr process,” Org. Biomol. Chem., vol. 11, no. 43, pp. 7516–7521, 2013,
[8] J. Scholz et al., “Ethylene to 2-butene in a continuous gas phase reaction using silp-type cationic nickel catalysts,” ChemCatChem, vol. 6, no. 1, pp. 162–169, 2014,
[9] R. Mancuso, C. S. Pomelli, C. Chiappe, R. C. Larock, and B. Gabriele, “A recyclable and base-free method for the synthesis of 3-iodothiophenes by the iodoheterocyclisation of 1-mercapto-3-alkyn-2-ols in ionic liquids,” Org. Biomol. Chem., vol. 12, no. 4, pp. 651–659, 2014,
[10] P. M. Ventura, C. S. Marques, A. A. Rosatella, C. A. M. Afonso, and F. Gonc, “Ecotoxicology and Environmental Safety Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria,” vol. 76, pp. 162–168, 2012,
[11] S. P. F. Costa, P. C. A. G. Pinto, R. A. S. Lapa, and M. L. M. F. S. Saraiva, “Toxicity assessment of ionic liquids with Vibrio fischeri: An alternative fully automated methodology,” J. Hazard. Mater., vol. 284, pp. 136–142, 2014,
[12] R. N. Das, T. E. Sintra, J. A. P. Coutinho, S. P. M. Ventura, K. Roy, and P. L. A. Popelier, “Development of predictive QSAR models for: Vibrio fischeri toxicity of ionic liquids and their true external and experimental validation tests,” Toxicol. Res. (Camb)., vol. 5, no. 5, pp. 1388–1399, 2016,
[13] F. G. Doherty, “A review of the Microtox® toxicity test system for assessing the toxicity of sediments and soils,” Water Qual. Res. J., vol. 36, no. 3, pp. 475–518, 2001.
[14] M. Ishaq, D. Zaini, A. Mohd, and M. Moniruzzaman, “Framework for Ecotoxicological Risk Assessment of Ionic Liquids,” Procedia Eng., vol. 148, pp. 1141–1148, 2016,
[15] M. I. Khan, D. Zaini, and A. M. Shariff, “Estimation of safe environmental concentrations of ionic liquids towards bacteria by chemical toxicity distribution method Estimation of safe environmental concentrations of ionic liquids towards bacteria by chemical toxicity distribution method,” 2018,
[16] A. Paterno’, S. Scire, and G. Musumarra, “A QSPR approach to the ecotoxicity of ionic liquids (Vibrio fischeri) using VolSurf principal properties,” Toxicol. Res. (Camb)., vol. 5, no. 4, pp. 1090–1096, 2016.
[17] A. Romero, A. Santos, J. Tojo, and A. Rodr, “Toxicity and biodegradability of imidazolium ionic liquids,” vol. 151, pp. 268–273, 2008,
[18] L. Maltby, “Small-Scale Freshwater Toxicity Investigations: Volume 1 ? Toxicity Test Methods,” Freshw. Biol., vol. 52, no. 1, pp. 198–198, 2007,
[19] S. M. Steinberg, E. J. Poziomek, W. H. Engelmann, and K. R. Rogers, “A review of environmental applications of bioluminescence measurements,” Chemosphere, vol. 30, no. 11, pp. 2155–2197, 1995,
[20] S. P. F. Costa, V. D. Justina, K. Bica, M. Vasiloiu, P. C. A. G. Pinto, and M. L. M. F. S. Saraiva, “Automated evaluation of pharmaceutically active ionic liquids’(eco) toxicity through the inhibition of human carboxylesterase and Vibrio fischeri,” J. Hazard. Mater., vol. 265, pp. 133–141, 2014.
[21] M. Jafari, M. H. Keshavarz, and H. Salek, “A simple method for assessing chemical toxicity of ionic liquids on Vibrio fischeri through the structure of cations with specific anions,” Ecotoxicol. Environ. Saf., vol. 182, p. 109429, 2019.
[22] M. G. Montalbán, J. M. Hidalgo, M. Collado-González, F. G. D. Baños, and G. Víllora, “Assessing chemical toxicity of ionic liquids on Vibrio fischeri: Correlation with structure and composition,” Chemosphere, vol. 155, pp. 405–414, 2016.
[23] K. M. Docherty and C. F. Kulpa, “Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids,” pp. 185–189, 2005,
[24] B. Peric, J. Sierra, E. Martí, R. Cruañas, and M. A. Garau, “Quantitative structure–activity relationship (QSAR) prediction of (eco) toxicity of short aliphatic protic ionic liquids,” Ecotoxicol. Environ. Saf., vol. 115, pp. 257–262, 2015.
[25] F. Yan, Q. Shang, S. Xia, Q. Wang, and P. Ma, “Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure-activity relationship method,” J. Hazard. Mater., vol. 286, pp. 410–415, 2015,
[26] D. J. Couling, R. J. Bernot, K. M. Docherty, J. N. K. Dixon, and E. J. Maginn, “Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling,” Green Chem., vol. 8, no. 1, pp. 82–90, 2006,
[27] A. Paternò et al., “Cyto- and enzyme toxicities of ionic liquids modelled on the basis of VolSurf+ descriptors and their principal properties,” SAR QSAR Environ. Res., vol. 27, no. 3, pp. 221–244, 2016,
[28] A. Paternò, G. Bocci, L. Goracci, G. Musumarra, and S. Scirè, “Modelling the aquatic toxicity of ionic liquids by means of VolSurf in silico descriptors,” SAR QSAR Environ. Res., vol. 27, no. 1, pp. 1–15, 2016.
[29] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, vol. 2. Springer, 2009.
[30] Priyanka and D. Kumar, “Decision tree classifier: A detailed survey,” Int. J. Inf. Decis. Sci., vol. 12, no. 3, pp. 246–269, 2020.
[31] K. Mittal, D. Khanduja, and P. C. Tewari, “An insight into ‘Decision Tree Analysis’”,” World Wide J. Multidiscip. Res. Dev., vol. 3, no. 12, pp. 111–115, 2017.
[32] Y. Zhao and Y. Zhang, “Comparison of decision tree methods for finding active objects,” Adv. Sp. Res., vol. 41, no. 12, pp. 1955–1959, 2008.
[33] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.
[34] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky, “Hough forests for object detection, tracking, and action recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 11, pp. 2188–2202, 2011.
[35] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Ann. Stat., pp. 1189–1232, 2001.
[36] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
[37] D. A. Otchere, T. O. A. Ganat, J. O. Ojero, M. Y. Taki, and B. N. Tackie-Otoo, “Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions,” J. Pet. Sci. Eng., p. 109244, 2021.
[38] H. Bozdogan, “Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions,” Psychometrika, vol. 52, no. 3, pp. 345–370, 1987.
[39] S. Parvez, C. Venkataraman, and S. Mukherji, “A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals,” Environ. Int., vol. 32, no. 2, pp. 265–268, 2006,
[40] W. Ertel, Introduction to artificial intelligence. Springer, 2018.
[41] D. A. Otchere, T. O. A. Ganat, R. Gholami, and M. Lawal, “A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction,” J. Nat. Gas Sci. Eng., vol. 91, no. April, p. 103962, 2021,