Experimental analysis and modeling of the recrystallization behaviour of a AA6060 extruded profile

Experimental analysis and modeling of the recrystallization behaviour of a AA6060 extruded profile


download PDF

Abstract. The microstructure of Al-Mg-Si alloys is gaining nowadays an increasing industrial interest because it influences the strength, crash, corrosion and esthetic properties of the extruded profiles. In order to investigate and predict the recrystallization behaviour in the extrusion of 6XXX aluminum alloys, experimental and numerical activities are still needed. In this work, the extrusion of an industrial-scale AA6060 aluminum alloy hollow profile was carried out. An innovative recrystallization model was developed and optimized by comparing the microstructural data experimentally acquired with the outputs of the simulation performed using the Finite Element commercial code Qform Extrusion. A good correlation between numerical prediction and experimental data was found, thus proving the reliability of the proposed AA6060 recrystallization model.

Recrystallization, Aluminum Alloy, Extrusion, FEM, Microstructure, 6XXX

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: NEGOZIO Marco, DONATI Lorenzo, PELACCIA Riccardo, REGGIANI Barbara, DI DONATO Sara, Experimental analysis and modeling of the recrystallization behaviour of a AA6060 extruded profile, Materials Research Proceedings, Vol. 28, pp 477-486, 2023

DOI: https://doi.org/10.21741/9781644902479-52

The article was published as article 52 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] L. Donati, B. Reggiani, R. Pelaccia, M. Negozio, S. Di Donato, Advancements in extrusion and drawing: a review of the contributes by the ESAFORM community, Int. J. Mater. Form. 15 (2022). https://doi.org/10.1007/s12289-022-01664-w
[2] C. Zhang, C. Wang, Q. Zhang, G. Zhao, G.L. Chen, Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al-Mg-Si alloy, J. Mater. Process. Technol. 270 (2019) 323-334. https://doi.org/10.1016/j.jmatprotec.2019.03.014
[3] C. Zhang, C. Wang, R. Guo, G. Zhao, L. Chen, W. Sun, X. Wang, Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation, J. Alloy. Compd. 773 (2018) 59-70. https://doi.org/10.1016/j.jallcom.2018.09.263
[4] T. Zhang, L. Li, S. Lu, L. Zhengfang, P. Chen, G. Hai, Static recrystallization kinetics and microstructure evolution of 7055 aluminum alloy, Metall. Res. Technol. 116 (2019) 120. https://doi.org/10.1051/metal/2018046
[5] T. Furu, R. Østhus, N. Telioui, R. Aagård, M. Bru, O.R. Myhr, Modeling the Effect of Mn on Extrudability, Mechanical Properties and Grain Structure of AA6082 Alloys, Proceedings of the Eleventh International Aluminum Extrusion Technology Seminar ET 2016, Chicago 3-6, 1 (2016) 567-590.
[6] A.R. Eivani, H.R. Jafarian, J. Zhou, Simulation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy, J. Manuf. Process. 57 (2020) 881-892. https://doi.org/10.1016/j.jmapro.2020.07.011
[7] Z. Peng, T. Sheppard, Prediction of Static Recrystallisation after Extrusion of Shaped Aluminium Sections, Mater. Sci. Forum 467–470 (2004) 407-420. https://doi.org/10.4028/www.scientific.net/msf.467-470.407.
[8] H.E. Vatne, T. Furu, R. Orsund, E. Nes, Modelling recrystallization after hot deformation of aluminum, Acta Mater. 11 (1996) 4463-4473. https://doi.org/10.1016/1359-6454(96)00078-X
[9] C.M. Sellars, Q. Zhu, Microstructural modelling of aluminium alloys during thermomechanical processing, Mater. Sci. Eng. A 280 (2000) 1-7. https://doi.org/10.1016/S0921-5093(99)00648-6
[10] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Second edition, Elsevier, Oxford, UK, 2004.
[11] L. Donati, A. Segatori, M. El Mehtedi, L. Tomesani, Grain evolution analysis and experimental validation in the extrusion of 6XXX alloys by use of a lagrangian FE code, Int. J. Plast. 46 (2013) 70-81. https://doi.org/10.1016/j.ijplas.2012.11.008
[12] M. Cheng, Effect of preheating condition on strength of AA6060 Aluminium Alloy for extrusion. Diss. Auckland University of Technology, 2010.
[13] C.O. Paulsen, Recrystallization Behaviour in Extruded Profile of Non-Dispersoid Containing Al-Mg-Si Alloys, PhD Thesis, Department of Materials Science and Engineering NTNU-Trondheim, Materials Science and Engineering, 2015.
[14] Q. Xiaoming, N. Parson, X. Grant Chen, Effect of post-homogenisation cooling rate and Mn addition on Mg2Si precipitation and hot workability of AA6060 alloys, Canadian Metallurgical Quarterly 59 (2020) 189-200. https://doi.org/10.1080/00084433.2020.1719332
[15] A. Hensel, T. Spittel, Kraft und Arbeitsbedarf bildsamer Formgeburgsverfahren, 1. Auflage, Leipzig: VEB Deutscher Verlag fur Grundstoffindustrie, 1978.
[16] P.E. Gill, W. Murray, Algorithms for the Solution of the Nonlinear Least-Squares Problem, SIAM J. Numeric. Analys. 15 (1978) 977-992. https://doi.org/10.1137/0715063