XCT-based microscale analysis of structure and deformability of abdominal wall meshes

XCT-based microscale analysis of structure and deformability of abdominal wall meshes

SOETE Jeroen, MAES Arne, ROJAS Camilo, KYOSEV Yordan, SCHMIDT Ann-Malin, LOMOV Stepan V., MISEREZ Marc, KERCKHOFS Greet, WEVERS Martine

download PDF

Abstract. Abdominal wall hernia repair mostly involves the implantation of a synthetic mesh material. The link between the mesh microstructure, mechanical behaviour and clinical outcome is still not fully understood, complicating the selection of a suitable patient-specific mesh. Here, we created a parametric 3D model of a synthetic mesh based on X-ray microfocus computed tomography (XCT) images. The model was implemented in a TexMind Warp Knitting Editor software and then exported for finite element model (FEM) analysis. This model allows better understanding of the mechanical behaviour of the mesh and identifying the influence of single structural parameters that are essential for the design of the mesh. We also used the XCT-based filament paths to directly build a FEM, representing all 3D structural details of the as-produced product. Whilst the mechanical analysis of the mesh is feasible, important difficulties are identified, related to the initial relaxed mesh contacts configuration and necessity of the mesh pretension in experiments and calculations.

Keywords
XCT, Knitted Textiles, Synthetic Meshes, Abdominal Wall Hernia Repair

Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: SOETE Jeroen, MAES Arne, ROJAS Camilo, KYOSEV Yordan, SCHMIDT Ann-Malin, LOMOV Stepan V., MISEREZ Marc, KERCKHOFS Greet, WEVERS Martine, XCT-based microscale analysis of structure and deformability of abdominal wall meshes, Materials Research Proceedings, Vol. 28, pp 277-284, 2023

DOI: https://doi.org/10.21741/9781644902479-30

The article was published as article 30 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] C. Towsend, Chapter 13: Surgery in the geriatric patient, in Sabiston Textbook of Surgery: The Biological Basis of Modern Surgical Practice, Elsevier, 2022.
[2] N.A. Henriksen, A. Montgomery, R. Kaufmann, F. Berrevoet, B. East, J. Fischer, W. Hope, D. Klassen, R. Lorenz, Y. Renard, M.A. Garcia Urena, M.P. Simons, Guidelines for treatment of umbilical and epigastric hernias from the European Hernia Society and Americas Hernia Society, British Journal of Surgery 107 (2020) 171-190. https://doi.org/10.1002/bjs.11489
[3] M.P.Simons, M. Smietanski, H.J. Bonjer, R. Bittner, M. Miserez, T.J. Aufenacker, R.J. Fitzgibbons, P.K. Chowbey, H.M. Tran, R. Sani, F. Berrevoet, J. Bingener, T. Bisgaard, K. Bury, G. Campanelli, D.C. Chen, J. Conze, D. Cuccurullo, A.C. de Beaux, H.H. Eker, R.H. Fortelny, J.F. Gillion, B.J. van den Heuvel, W.W. Hope, L.N. Jorgensen, U. Klinge, F. Köckerling, J.F. Kukleta, I. Konate, A.L. Liem, D. Lomanto, M.J.A. Loos, M. Lopez-Cano, M.C. Misra, A. Montgomery, S. Morales-Conde, F.E. Muysoms, H. Niebuhr, P. Nordin, M. Pawlak, G.H. van Ramshorst, W.M.J. Reinpold, D.L. Sanders, N. Schouten, S. Smedberg, R.K.J. Simmermacher, S. Tumtavitikul, N. van Veenendaal, D. Weyhe, A.R. Wijsmuller, The HerniaSurge Group, International guidelines for groin hernia management, Hernia 22 (2018) 1-165. https://doi.org/10.1007/s10029-017-1668-x
[4] D. Le, C.W. Deveney, N.L. Reaven, S.E. Funk, K.J. McGaughey, R.G. Martindale, Mesh choice in ventral hernia repair: so many choices, so little time, The American J. Surg. 205 (2013) 602-607. https://doi.org/10.1016/j.amjsurg.2013.01.026
[5] L. Miao, F. Wang, L. Wang, T. Zou, G. Brochu, R. Guidoin, Physical Characteristics of Medical Textile Prostheses Designed for Hernia Repair: A Comprehensive Analysis of Select Commercial Devices, Materials 8 (2015) 8148-8168 https://doi.org/10.3390/ma8125453
[6] N. Sanbhal, L. Miao, R. Xu, A. Khatri, L. Wang, Physical structure and mechanical properties of knitted hernia mesh materials: A review, J. Industr. Text. 48 (2017) 333-360. https://doi.org/10.1177/1528083717690613
[7] W.S. Cobb, J.M. Burns, K.W. Kercher, B.D. Matthews, H. James Norton, B. Todd Heniford, Normal Intraabdominal Pressure in Healthy Adults, J. Surgic. Res. 129 (2005) 231-235. https://doi.org/10.1016/j.jss.2005.06.015
[8] K. Baylón, P. Rodríguez-Camarillo, A. Elías-Zúñiga, J.A. Díaz-Elizondo, R. Gilkerson, K. Lozano, Past, present and future of surgical meshes: A review, Membranes 7 (2017) 47. https://doi.org/10.3390%2Fmembranes7030047
[9] X. Zhang, P. Ma, Application of knitting structure textiles in medical areas, Autex Res. J. 18 (2018) 181–191. https://doi.org/10.1515/aut-2017-0019
[10] Y. Kyosev, Warp Knitted Fabrics Construction, Milton: CRC Press LLC, 325, 2019
[11] L.-M. Zhu, P. Schuster, U. Klinge, Mesh implants: an overview of crucial mesh parameters, World journal of gastrointestinal surgery 7 (2015) 226. https://doi.org/10.4240%2Fwjgs.v7.i10.226
[12] B. Hernández-Gascón, E. Peña, G. Pascual, M. Rodríguez, J.M. Bellón, B. Calvo, Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects, J. Mech. Behav. Biomed. Mater. 5 (2012) 257-271. https://doi.org/10.1016/j.jmbbm.2011.09.005
[13] M.S. Yeoman, D. Reddy, H.C. Bowles, D. Bezuidenhout, P. Zilla, and T. Franz, A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles, Biomaterials 31 (2010) 8484-8493. https://doi.org/10.1016/j.biomaterials.2010.07.033
[14] E. Pena, B. Hernandez-Gascon, and B. Calvo, Human abdomen: Mechanical modeling and clinical applications. Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling, ed. Y. Payan and J. Ohayon, 2017, pp. 267-285.
[15] A. Tomaszewska, D. Reznikov, Combined numerical and experimental approach to determine numerical model of abdominal scaffold, Comput. Methods Biomech. Biomed. Engin. 25 (2022) 1235-1248. https://doi.org/10.1080/10255842.2021.2005788
[16] B. Hernandez-Gascon, N. Espes, E. Pena, G. Pascual, J.M. Bellon, B. Calvo, Computational framework to model and design surgical meshes for hernia repair, Comput. Methods Biomech. Biomed. Engin. 17 (2014) 1071-1085. https://doi.org/10.1080/10255842.2012.736967
[17] Y. Kyosev, Topology-Based Modeling of Textile Structures and Their Joint Assemblies: Principles, Algorithms and Limitations, Springer eBook Collection. Cham: Springer International Publishing, 238, 2019
[18] S. Sha, A. Geng, Y. Gao, B. Li, X. Jiang, H. Tao, L. Luo, X. Yuan, H. Ke et al., Review on the 3-D simulation for weft knitted fabric, J. Engin. Fibers Fabrics 16 (2021) 15589250211012528.
[19] H. Liu, Y. Kyosev, G. Jiang, Yarn level simulation of warp-knitted clothing elements – first results and challen ges, Communic. Develop. Assembl. Text. Products 3 (2022) 115-126. https://doi.org/10.25367/cdatp.2022.3.
[20] Y. Kyosev, TexMind Warp Knitting Editor 3D, TexMind UG: Heidenau, 2022.
[21] N. Naouar, D. Vasiukov, C.H. Park, S.V. Lomov, P. Boisse, Meso-FE modelling of textile composites and X-ray tomography, J. Mater. Sci. 55 (2020) 16969-16989. https://doi.org/10.1007/s10853-020-05225-x
[22] Harjkova, G., M. Barburski, S.V. Lomov, O. Kononova, and I. Verpoest, Weft knitted loop geometry measured with X-ray micro-computer tomography. Textile Research Journal, 2014. 84: pp. 500-512.
[23] P. Boisse, R. Akkerman, P. Carlone, L. Karger, S.V. Lomov, J. Sherwood, Advances in composite forming through 25 years of ESAFORM, Int. J. Mater. Forming 15 (2022) 39. http://doi.org/10.1007/s12289-022-01682-8
[24] DynaMesh. Tailored Implants Made of PVDF. 2022 [cited 2022 14/11/2022]; Information on: https://en.dyna-mesh.com/company-gb/.
[25] H. Wang, B. Klosterhalfen, A. Müllen, T. Otto, A. Dievernich, S. Jockenhövel, Degradation resistance of PVDF mesh in vivo in comparison to PP mesh, J. Mech. Behav. Biomed. Mater. 119 (2021) 104490. https://doi.org/10.1016/j.jmbbm.2021.104490
[26] C.D. Klink, K. Junge, M. Binnebösel, H.P. Alizai, J. Otto, U.P. Neumann, U. Klinge, Comparison of Long-Term Biocompability of PVDF and PP Meshes, J. Invest. Surgery 24 (2011) 292-299. https://doi.org/10.3109/08941939.2011.589883