Resources and manufacturing technology evaluation of hybrid additive metal laminated tooling for forming

Resources and manufacturing technology evaluation of hybrid additive metal laminated tooling for forming

DARDAEI JOGHAN Hamed, HAHN Marlon, AGBOOLA Ololade, TEKKAYA A. Erman

download PDF

Abstract. The rough surface finish caused by the stair step effect is the major drawback in the application of sheet metal laminates in rapid tooling. The application of laser metal deposition (LMD) and subsequent post-processing (milling, ball burnishing, and laser polishing) to reduce the stair-step effect in hybrid additive metal laminated forming tools was recently presented. In the present study, the energy consumption and manufacturing time of the hybrid process are compared with the conventional (milling plus hardening by heat treatment) as well as with full LMD and milled components. The hybrid process requires significantly less energy and manufacturing time compared to the LMD components. Since the surface hardness is sufficient for tooling in the hybrid process, no additional hardening is required, also resulting in a shorter manufacturing time and lower energy relative to the conventional method (depending on the part mass, a minimum of 29% is faster). The optimal sheet laminate combination based on the economic criteria for the tool with a radius of 6 mm is presented.

Keywords
Sheet Metal Lamination, Laser Metal Deposition, Deep Drawing Tools

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: DARDAEI JOGHAN Hamed, HAHN Marlon, AGBOOLA Ololade, TEKKAYA A. Erman, Resources and manufacturing technology evaluation of hybrid additive metal laminated tooling for forming, Materials Research Proceedings, Vol. 28, pp 21-30, 2023

DOI: https://doi.org/10.21741/9781644902479-3

The article was published as article 3 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] F.V. Hart, Mold and mold making method, U.S. patent: 2274060 A, priority date: 31.10.1938 (2274060)
[2] T. Nakagawa, K. Suzuki, A Low Cost Blanking Tool with Bainite Steel Sheet Laminated. In: J.M. Alexander (Ed.), Proceedings of the Twenty-First International Machine Tool Design and Research Conference, Macmillan Education UK, London, 1981, pp. 129-138. https://doi.org/10.1007/978-1-349-05861-7_18
[3] M. Kleiner, R. Krux, Entwicklung eines Verfahrens zur schnellen Herstellung von Tief- und Streckziehwerkzeugen aus Blechlamellen für die Prototypen- und Kleinserienfertigung (Rapid Tooling), Forschung für die Praxis // Stahl-Zentrum Düsseldorf P 384 (2001), Verl. Und Vertriebsges. mbH.
[4] W.R. Weaver, Process for the manufacture of laminated tooling, U.S. patent: 5031483 A, priority date: 06.10.1989
[5] D.F. Walczyk, D.E. Hardt, A New Rapid Tooling Method for Sheet Metal Forming Dies. In: R.P. Chartoff, A.J. Lightman, J.A. Schenk et al. (Eds.), Fifth International Conference on Rapid Prototyping, Dayton, Ohio, USA, 1994, pp, 275-289.
[6] L. Hiegemann, C. Agarwal, C. Weddeling, A.E. Tekkaya, Reducing the stair step effect of layer manufactured surfaces by ball burnishing, In: 19th ESAFORM, Springer Berlin Heidelberg, 2016, 190002-1-190002-6 https://doi.org/10.1063/1.4963612
[7] T. Himmer, T. Nakagawa, M. Anzai, Lamination of metal sheets, Comput. Ind. 39 (1999) 27-33. https://doi.org/10.1016/S0166-3615(98)00122-5
[8] H. Dardaei Joghan, M. Hahn, J.T. Sehrt, A.E. Tekkaya, Hybrid additive manufacturing of metal laminated forming tools, CIRP Annals 71 (2022) 225-228. https://doi.org/10.1016/j.cirp.2022.03.018
[9] DIN 52900: DIN EN ISO/ASTM 52900 (2021). Fundamentals and vocabulary. Beuth Verlag GmbH, Berlin
[10] TRUMPF GmbH + Co.: Datensammlung: TLC 1005 mit TLF 1800t, 2400t, 3000t, 3800t. TRUMPF GmbH + Co.:30–31
[11] F.E.K. Sato, T. Nakata, Energy Consumption Analysis for Vehicle Production through a Material Flow Approach, Energies 13 (2020) 2396. https://doi.org/10.3390/en13092396
[12] A.J. Yule, J.J. Dunkley, Atomization of Melts: For powder production and spray deposition, Clarendon, 1994
[13] A. Wippermann, T.G. Gutowski, B. Denkena, M.-A. Dittrich, Y. Wessarges, Electrical energy and material efficiency analysis of machining, additive and hybrid manufacturing, J. Clean. Product. 251 (2020) 119731. https://doi.org/10.1016/j.jclepro.2019.119731
[14] G. Zhao, Y.B. Guo, P. Zhu, Y. Zhao, Energy Consumption Characteristics and Influence on Surface Quality in Milling, Procedia CIRP 71 (2018) 111-115. https://doi.org/10.1016/j.procir.2018.05.081
[15] A. Guminski, T. Hübner, E. Rouyrre, S. von Roon, M. Schimmel, C. Achtelik, J.-M. Rhiemeier, U. Fahl, I. Bailey, Energiewende in der Industrie Potenziale und Wechselwirkungen mit dem Energiesektor, 2019
[16] D. Liedtke, H.-W. Zoch, G. Spur, Wärmebehandlung von Stählen. In: Zoch H-W, Spur G (eds) Handbuch Wärmebehandeln und Beschichten. Carl Hanser Verlag GmbH & Co. KG, München, 2019, pp. 335-501