Feasibility study of compression molding for large reinforcement structures in the commercial vehicle sector

Feasibility study of compression molding for large reinforcement structures in the commercial vehicle sector

LÜCKENKÖTTER Julian, LEIMBACH Jan-Patrick, STALLMEISTER Tim, MARTEN Thorsten, TRÖSTER Thomas

download PDF

Abstract. Due to an increasing volume of shipments, there is a significant need for more delivery vehicles. One approach to reduce the associated increase in carbon dioxide (CO2) emissions is a new light weight design approach involving the substitution of conventional materials with glass fiber mat-reinforced thermoplastics (GMT) based on polypropylene (PP). The application of GMT by compression molding is a widely used process in the automotive industry. However, application in the commercial vehicle sector requires much larger dimensions, making it necessary to clarify whether the manufacturing process and material are suitable for semi-structural applications on this scale. To find this out, two replacement geometries are abstracted in this study and manufactured by varying the main manufacturing parameters. The feasibility can be demonstrated by recording and analyzing the resulting process variables and measuring the formed fiber distribution. At the end of the paper, recommendations are given for the production of GMT structures on the scale of commercial vehicles.

Keywords
Compression Molding, Fiber Content, Process Development, Lightweight Design

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: LÜCKENKÖTTER Julian, LEIMBACH Jan-Patrick, STALLMEISTER Tim, MARTEN Thorsten, TRÖSTER Thomas, Feasibility study of compression molding for large reinforcement structures in the commercial vehicle sector, Materials Research Proceedings, Vol. 28, pp 249-258, 2023

DOI: https://doi.org/10.21741/9781644902479-27

The article was published as article 27 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] KE-CONSULT Kurte&Esser GbR, KEP-Studie 2022 – Analyse des Marktes in Deutschland, Cologne, 2022.
[2] KE-CONSULT Kurte & Esser GbR, BIEK Kompendium Teil 2, 2018.
[3] B. Klein, T. Gänsicke, Leichtbau-Konstruktion. Dimensionierung, Strukturen, Werkstoffe und Gestaltung, eleventh ed., Springer Vieweg, Wiesbaden, 2018. https://doi.org/10.1007/978-3-658-26846-6
[4] AVK – Industrievereinigung Verstärkte Kunststoffe e. V., Handbuch Faserverbundkunststoffe / Composites, fourth ed., Springer Vieweg, Wiesbaden, 2014. https://doi.org/10.1007/978-3-658-02755-1
[5] A. Rubio, P. Eguizabal, M.A. Mendizabal and J.F. Liceaga, Influence of the processing parameters on glass mat reinforced thermoplastic (GMT) stamping, Compos. Manuf. 3 (1992) 47-52. https://doi.org/10.1016/0956-7143(92)90183-U
[6] J.L. Thomason, The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP, Compos. Part A 33 (2002) 1641-1652. https://doi.org/10.1016/S1359-835X(02)00179-3
[7] S. Pöhler, Konzeptionierung und Auslegung eines Vorderachsträgers in hybrider Leichtbauweise im C-Segment, Shaker-Verlag, Düren, 2021. ISBN: 9783844082104
[8] T. Stallmeister, T. Tröster, In-Mold-Assembly of Hybrid Bending Structures by Compression Molding. Key Eng. Mater. 926 (2022) 1457-1467. https://doi.org/10.4028/p-5fxp53
[9] DIN EN ISO 1172:1998-12, Prepregs, Formmassen und Laminate; Bestimmung des Textilglas- und Mineralfüllstoffgehalts, Beuth Verlag GmbH, Berlin, 1998.
[10] Information on http://www.tomchemie.de/Mathe/3.1.3/3.1.3.htm (accessed 31 January 2023).