Experimental analysis on the influence of freeform bending on Barkhausen noise for steel tubes

Experimental analysis on the influence of freeform bending on Barkhausen noise for steel tubes

MAIER Daniel, SCANDOLA Lorenzo, WERNER Matthias, STEBNER Sophie, ISMAIL Ahmed, LOHMANN Boris, MÜNSTERMANN Sebastian, VOLK Wolfram, LECHNER Philipp

download PDF

Abstract. Freeform bending with a movable die makes it possible to bend complex structures and seamless radii without changing the bending tools. Currently, most research focuses on minimizing the geometrical deviations without considering the mechanical properties of the bent tubes. A previous work showed, that the geometry can be decoupled from the mechanical properties with non-tangential bending [1]. The implementation of a soft sensor based on ultrasonic contact impedance measurements (UCI) of the property-controlled freeform bending has also been examined [2], as well as a structure for closed-loop control based on material properties [3]. The present work deals with a micro-magnetic sensor and Barkhausen noise (BHN) and investigates its suitability for the closed-loop control. For this purpose, different processing routes for freeform-bent steel tubes are experimentally investigated by their characteristic BHN. In addition to an existing simulation model, a data basis for the impact of freeform bending parameters is built to extend the existing model of a property-based closed-loop control.

Keywords
Freeform Bending, FEM, Barkhausen Noise, Softsensor, Closed-Loop Control

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: MAIER Daniel, SCANDOLA Lorenzo, WERNER Matthias, STEBNER Sophie, ISMAIL Ahmed, LOHMANN Boris, MÜNSTERMANN Sebastian, VOLK Wolfram, LECHNER Philipp, Experimental analysis on the influence of freeform bending on Barkhausen noise for steel tubes, Materials Research Proceedings, Vol. 28, pp 2091-2100, 2023

DOI: https://doi.org/10.21741/9781644902479-224

The article was published as article 224 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] D. Maier, S. Stebner, A. Ismail, M. Dölz, B. Lohmann, S. Münstermann, W. Volk, The influence of freeform bending process parameters on residual stresses for steel tubes, Adv. Industr. Manuf. Eng. 2 (2021) 100047. https://doi.org/10.1016/j.aime.2021.100047
[2] S.C. Stebner, D. Maier, A. Ismail, S. Balyan, M. Dölz, B. Lohmann, W. Volk, S. Münstermann, A System Identification and Implementation of a Soft Sensor for Freeform Bending, Mater. 14 (2021) 4549. https://doi.org/10.3390/ma14164549
[3] A. Ismail, D. Maier, S. Stebner, W. Volk, S. Münstermann, B. Lohmann, A Structure for the Control of Geometry and Properties of a Freeform Bending Process, IFAC-PapersOnLine 54 (2021) 115-120. https://doi.org/10.1016/j.ifacol.2021.10.060
[4] N. Beulich, R. Mertens, J. Spoerer, W. Volk, Influence of tube rollforming on material properties and subsequent bending processes, Forming Technology Forum, 2019.
[5] N. Beulich, J. Spoerer, W. Volk, Sensitivity analysis of process and tube parameters in free-bending processes, IOP Conf. Ser.: Mater. Sci. Eng. 651 (2019) 12031. https://doi.org/10.1088/1757-899X/651/1/012031
[6] P. Gantner, D.K. Harrison, A.K. de Silva, H. Bauer, The Development of a Simulation Model and the Determination of the Die Control Data for the Free-Bending Technique, Proceedings of the Institution of Mechanical Engineers, Part B: J. Eng. Manuf. 221 (2007) 163-171. https://doi.org/10.1243/09544054JEM642
[7] N. Beulich, P. Craighero, W. Volk, FEA Simulation of Free-Bending – a Preforming Step in the Hydroforming Process Chain, J. Phys.: Conf. Ser. 896 (2017) 12063. https://doi.org/10.1088/1742-6596/896/1/012063
[8] M.K. Werner, D. Maier, L. Scandola, W. Volk, Motion profile calculation for freeform bending with moveable die based on tool parameters, ESAFORM 2021, 2021. https://doi.org/10.25518/esaform21.1879
[9] S. Groth, B. Engel, K. Langhammer, Algorithm for the quantitative description of freeform bend tubes produced by the three-roll-push-bending process, Prod. Eng. Res. Devel. 12 (2018) 517-524. https://doi.org/10.1007/s11740-018-0795-2
[10] N. Chernov, Circular and Linear Regression: Fitting circles and lines by least squares. [S.l.]: CRC PRESS, 2020.
[11] L. Scandola, D. Maier, M. Konrad Werner, C. Hartmann, W. Volk, Automatic Extraction and Conversion of the Bending Line from Parametric and Discrete Data for the Free-Form Bending Process, in The Minerals, Metals & Materials Series, NUMISHEET 2022, K. Inal, J. Levesque, M. Worswick, C. Butcher (Eds.), Cham: Springer International Publishing, 2022, pp. 813-826.
[12] W. Wei, H. Wang, H. Xiong, X. Cheng, J. Tao, X. Guo, Research on influencing factors and laws of free-bending forming limit of tube, Int. J. Adv. Manuf. Technol. 106 (2020) 1421-1430. https://doi.org/10.1007/s00170-019-04692-0
[13] D. Staupendahl, S. Chatti, A.E. Tekkaya, Closed-loop control concept for kinematic 3D-profile bending, in Nantes, France, 2016, p. 150002.
[14] J. Wu, B. Liang, J. Yang, Trajectory prediction of three-dimensional forming tube based on Kalman filter, Int. J. Adv. Manuf. Technol. 121 (2022) 5235-5254. https://doi.org/10.1007/s00170-022-09521-5
[15] S. Schuster, L. Dertinger, D. Dapprich, J. Gibmeier, Application of magnetic Barkhausen noise for residual stress analysis – Consideration of the microstructure, Mater. Test. 60 (2018) 545-552. https://doi.org/10.3139/120.111186
[16] K. Shimosaka, T. Bergs, D. Schraknepper, S. Münstermann, M. Meurer, In-situ Evaluation of Surface Integrity Modifications by means of Barkhausen Noise Measurement, Procedia CIRP 102 (2021) 465-470. https://doi.org/10.1016/j.procir.2021.09.079
[17] L. Mierczak, D.C. Jiles, G. Fantoni, A New Method for Evaluation of Mechanical Stress Using the Reciprocal Amplitude of Magnetic Barkhausen Noise, IEEE Trans. Magn. 47 (2011) 459-465. https://doi.org/10.1109/TMAG.2010.2091418
[18] V. Moorthy, B.A. Shaw, S. Day, Evaluation of applied and residual stresses in case-carburised En36 steel subjected to bending using the magnetic Barkhausen emission technique, Acta Mater. 52 (2004) 1927-1936. https://doi.org/10.1016/j.actamat.2003.12.034
[19] S. Santa-aho, A. Laitinen, A. Sorsa, M. Vippola, Barkhausen Noise Probes and Modelling: A Review, J. Nondestruct. Eval. 38 (2019). Https://doi.org/10.1007/s10921-019-0636-z
[20] S.C. Stebner, D. Maier, A. Ismail, M. Dölz, B. Lohman, W. Volk, S. Münstermann, Extension of a Simulation Model of the Freeform Bending Process as Part of a Soft Sensor for a Property Control, Key Eng. Mater. 926 (2022) 2137-2145. https://doi.org/10.4028/p-d17700