Conception of a multivariable product property control for punch-hole-rolling

Conception of a multivariable product property control for punch-hole-rolling

SPIES Daniel, MOLITOR Dirk Alexander, DAMON James, KNOLL Maximilian, DIETRICH Stefan, SCHULZE Volker, GROCHE Peter

download PDF

Abstract. Process controls are getting increasingly more common in forming. Nevertheless, they are not suitable to achieve consistent quality when dealing with varying process disturbances. Differing properties of the raw material and other external influences like temperature variations and vibrations make it hard to achieve the tightly specified tolerances needed in today’s production environment. Product property controls represent a solution for these difficulties and create the opportunity to integrate additional functionality into the product and the process. In this project, the implementation of a multivariable product property control is investigated using the example of a recently developed process, called punch-hole-rolling. It is targeted to control product properties such as the collar height and the hardness on the inner surface. It has been shown in previous publications that it is possible to control the collar height in 1.0338 by carefully choosing suitable process parameters. In recent works the possibility was presented to control the hardness by changing the same parameters, using the TRIP steel 1.4301. The publication at hand aims at proving the feasibility of the multivariable product property control by reviewing the previous results for 1.4301 and proving that it is possible to control the collar height and the hardness on the inside of the collar simultaneously. Further, a concept is presented for the implementation of such a control.

Keywords
Property Control, Forming, Punch-Hole-Rolling, Sheet-Bulk Metal Forming

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: SPIES Daniel, MOLITOR Dirk Alexander, DAMON James, KNOLL Maximilian, DIETRICH Stefan, SCHULZE Volker, GROCHE Peter, Conception of a multivariable product property control for punch-hole-rolling, Materials Research Proceedings, Vol. 28, pp 2081-2090, 2023

DOI: https://doi.org/10.21741/9781644902479-223

The article was published as article 223 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Statistisches Bundesamt (Destatis), Preise August 2022, Preise und Preisindizes für gewerbliche Produkte (Erzeugerpreise), Wiesbaden, 2022
[2] Statistisches Bundesamt (Destatis), Preise April 2019, Preise und Preisindizes für gewerbliche Produkte (Erzeugerpreise), Wiesbaden, 2019
[3] A. Weisgerber, K. Mindrup, K. Hilse, L. Köhler, L. Beutin, L. Badum, Beschlussempfehlung und Bericht, 19/30949, Bundesanzeiger Verlag GmbH, Köln, 2021.
[4] T. Hertan, Optimaler Energieeinsatz bei der Fertigung durch Massivumformung, Stuttgart, Universität Stuttgart, Institut für Umfonntechnik, 1989
[5] J. Allwood, S. Duncan, J. Cao, P. Groche, G. Hirt, B. Kinsey, T. Kuboki, M. Liewald, A. Sterzing, A. Tekkaya, Closed-loop control of product properties in metalforming, in: CIRP Annals – Manuf. Technol. 65 (2016) 573-596. https://doi.org/10.1016/j.cirp.2016.06.002
[6] M. Merklein, J.M. Allwood, B.-A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A.E. Tekkaya, A. Weckenmann, Bulk forming of sheet metal, in: CIRP Annals – Manuf. Technol. 61 (2012) 725-745. https://doi.org/10.1016/j.cirp.2012.05.007
[7] M. Knoll, F. Mühl, P. Groche, V. Schulze, Simulative basic investigation for a new forming process punch-hole-rolling, Procedia Manuf. 50 (2020) 503-509. https://doi.org/10.1016/j.promfg.2020.08.091
[8] D. Spies, F. Mühl, M. Knoll, S. Dietrich, P. Groche, V. Schulze, Integration of a magnetic Barkhausen noise sensor for the Product Property Control in a progressive press tool for punch-hole-rolling, in: 36. ASK Proceedings, 2022, pp. 445-454
[9] F. Mühl, M. Knoll, M. Khabou, S. Dietrich, P. Groche, V. Schulze, Soft sensor approach based on magnetic Barkhausen noise by means of the forming process punch-hole-rolling, Adv. Industr. Manuf. Eng. 2 (2021). http://doi.org/10.1016/j.aime.2021.100039
[10] T. Yoshihiro, I. Takeshi, Constitutive modeling of trip steel and its application to the improvement of mechanical properties, Int. J. Mech. Sci. 37 (1995) 1295-1305. https://doi.org/10.1016/0020-7403(95)00039-Z
[11] T. Le Manh, J.A.P Benitez, J.H.E. Hernandez, Lopez Hallen, J.M. (Eds.), Barkhausen Noise for Non-destructive Testing and Materials Characterization in Low Carbon Steels. in: Woodhead Publishing Series in Electronic and Optical Materials, 2020.
[12] H. Sakamoto, M. Okada, M. Homma, Theoretical analysis of barkhausen noise in carbon steels, IEEE Trans. Magnet. 23 (1987) 2236-2238. https://doi.org/10.1109/TMAG.1987.1065664
[13] R. Ranjan, D.C. Jiles, O. Buck, R.B. Thompson, Grain size measurement using magnetic and acoustic barkhausen noise, J. Appl. Phys. 61 (1987) 3199-3201. https://doi.org/10.1063/1.338900
[14] C. Gatelier-Rothea, J. Chicois, R. Fougeres, P. Fleischmann, Characterization of pure iron and (130p.p.m.) carbon–iron binary alloy by barkhausen noise measurements: study of the influence of stress and microstructure, Acta Mater. 46 (1998) 4873-4882. https://doi.org/10.1016/S1359-6454(98)00205-5