Laser transmission welding of PEKK: Influence of material properties and process parameters on the weld strength

Laser transmission welding of PEKK: Influence of material properties and process parameters on the weld strength

MATUS AGUIRRE Marcela, GARNIER Christian, GILBLAS Rémi, COSSON Benoît, AKUÉ André, SCHMIDT Fabrice, CHABERT France

download PDF

Abstract. Laser transmission welding (LTW) is a suitable process for assembling thermoplastic materials. This joining process is use to assembly most thermoplastics, but high-performance thermoplastics, such as polyetherketoneketone (PEKK), have received less attention until now. The present work deals with joining PEKK parts by LTW in amorphous over semi-crystalline state configuration. The optical properties of amorphous and semi-crystalline states were measured. The effect of the upper part thickness (2 or 4 mm) and those of the laser power reaching the interface was assessed through the determination of the heat affected zone (HAZ) dimensions and the mechanical resistance of the bonds. Single lap shear (SLS) tests were conducted to investigate the influence of the process parameters on the interfacial strength and to validate the weld quality. The highest LSS is obtained around 60 MPa. When increasing the laser power, the dimensions of the HAZ increase, and the mechanical strength decreases.

Laser Welding, Thermoplastics, Optical Properties, Single Lap Shear Test

Published online 4/19/2023, 12 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: MATUS AGUIRRE Marcela, GARNIER Christian, GILBLAS Rémi, COSSON Benoît, AKUÉ André, SCHMIDT Fabrice, CHABERT France, Laser transmission welding of PEKK: Influence of material properties and process parameters on the weld strength, Materials Research Proceedings, Vol. 28, pp 1829-1840, 2023


The article was published as article 198 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] I. Jones, Laser welding for plastic components, Assem. Autom. 22 (2002) 129-135.
[2] F. Chabert, C. Garnier, J. Sangleboeuf, A.C.A. Asseko, B. Cosson, Transmission Laser Welding of Polyamides: Effect of Process Parameter and Material Properties on the Weld Strength, Procedia Manuf. 47 (2020) 962-968.
[3] N. Amanat, C. Chaminade, J. Grace, N. James, D.R. Mckenzie, Optimal process parameters for thermoplastic polyetheretherketone joints fabricated using transmission laser welding and Lumogen® IR absorptive pigment, J. Laser. Appl. 23 (2011) 012003.
[4] S. Berger, F. Oefele, M. Schmidt, Laser transmission welding of carbon fiber reinforced thermoplastic using filler material—A fundamental study, J. Laser. Appl. 27 (2015) S29009.
[5] X.F. Xu, A. Parkinson, P.J. Bates, G. Zak, Effect of part thickness, glass fiber and crystallinity on light scattering during laser transmission welding of thermoplastics, Opt. Laser. Technol. 75 (2015) 123-131.
[6] V. Kagan, R.G. Bray, Advantages and limitations of laser welding technology for semi-crystalline reinforced plastics, Int. Congr. Appl. Lasers Electro-Opt, Jacksonville, Florida, USA, Laser Institute of America, 2001 [cited 2022 Dec 11], 1218-1227. Available from:
[7] V.A. Kagan, R.G. Bray, W.P. Kuhn, Laser Transmission Welding of Semi-Crystalline Thermoplastics—Part I: Optical Characterization of Nylon Based Plastics, J. Reinf. Plast. Compos. 21 (2002) 1101-1122.
[8] N. Amanat, C. Chaminade, J. Grace, D.R. Mckenzie, N. James, Transmission laser welding of amorphous and semi-crystalline poly-ether-ether-ketone for applications in the medical device industry, Mater. Des. 31 (2010) 4823-4830.
[9] M. Villar, C. Garnier, F. Chabert, V. Nassiet, D. Samelor, J.C. Diez, A. Sotelo, M.A. Madre, In-situ infrared thermography measurements to master transmission laser welding process parameters of PEKK, Opt. Laser. Eng. 106 (2018) 94-104.
[10] T. Choupin, L. Debertrand, B. Fayolle, G. Regnier, C. Paris, J. Cinquin, B. Brule, Influence of thermal history on the mechanical properties of poly(ether ketone ketone) copolymers, Polym. Cryst. 2 (2019) e10086.
[11] T.B. Juhl, J. de C. Christiansen, E.A. Jensen, Mechanical testing of polystyrene/polystyrene laser welds, Polym. Test. 32 (2013) 475-481.
[12] M.A. Villar montoya, Procédé de soudage laser de polymères haute performance : établissement des relations entre les paramètres du procédé, la structure et la morphologie du polymère et les propriétés mécaniques de l’assemblage, PhD Thesis, Toulouse, INPT, 2018. Available from:
[13] A. Korycki, C. Garnier, M. Bonmatin, E. Laurent, F. Chabert, Assembling of Carbon Fibre/PEEK Composites: Comparison of Ultrasonic, Induction, and Transmission Laser Welding, Materials 15 (2022) 6365.
[14] T.B. Juhl, J. de Claville Christiansen, EA. Jensen, Investigation on high strength laser welds of polypropylene and high-density polyethylene, J. Appl. Polym. Sci. 129 (2013) 2679-2685.
[15] V. Wippo, Y. Winter, P. Jaeschke, O. Suttman, L. Overmeyer, The Influence of Laser Welding Processes on the Weld Seam Quality of Thermoplastic Composites with High Moisture Content, Phys. Procedia 83 (2016) 1064-1072.
[16] A.C. Akué Asséko, B. Cosson, É. Lafranche, F. Schmidt, Y. Le Maoult, Effect of the developed temperature field on the molecular interdiffusion at the interface in infrared welding of polycarbonate composites, Compos. Part B Eng. 97 (2016) 53-61.
[17] L. Martineau, F. Chabert, B. Boniface, G. Bernhart, Effect of interfacial crystalline growth on autohesion of PEEK, Int. J. Adhes. Adhes. 89 (2019) 82-87.
[18] H. Potente, F. Becker, G. Fiegler, Investigations towards application of a new technique on laser transmission welding, Weld World. 45 (2001) 15-20.