Development of a method for performance characterisation of PEMEC process considering electrolyte temperature in case of hybrid polishing of 316L steel

Development of a method for performance characterisation of PEMEC process considering electrolyte temperature in case of hybrid polishing of 316L steel

KRZAK Daniel, ROY Florian, SALVATORE Ferdinando, GIDON Antoine, GUERIN Stéphane, RECH Joël

download PDF

Abstract. This work falls within the context of very rough parts (Ra > 10 µm) polishing using a new hybrid process called PEMEC, which combines a mechanical abrasion action (tribofinishing) and an anodic dissolution action (electrochemical polishing). The study of the performances of a polishing process requires the monitoring of the surface roughness, but also the monitoring of the dimensions and the shape of the parts. This paper proposes a new method for characterising polishing operations that enables all these criteria to be monitored in a single test. This method is applied to the study of the influence of the electrolyte temperature in the PEMEC process.

Keywords
Polishing, Drag Finishing, Electrochemical Polishing, Surface Roughness, Material Removal

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: KRZAK Daniel, ROY Florian, SALVATORE Ferdinando, GIDON Antoine, GUERIN Stéphane, RECH Joël, Development of a method for performance characterisation of PEMEC process considering electrolyte temperature in case of hybrid polishing of 316L steel, Materials Research Proceedings, Vol. 28, pp 1673-1682, 2023

DOI: https://doi.org/10.21741/9781644902479-180

The article was published as article 180 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] F. Cabanettes, A. Joubert, G. Chardon, V. Dumas, J. Rech, S. Grosjean, Z. Dimkovski, Topography of as built surfaces generated in metal additive manufacturing: a multi-scale analysis, Precis. Eng. 52 (2018) 249-265. https://doi.org/10.1016/j.precisioneng.2018.01.002
[2] E. Łyczkowska, P. Szymczyk, B. Dybała, E. Chlebus, Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing, Arch. Civ. Mech. 14(4) (2014) 586-594. https://doi.org/10.1016/j.acme.2014.03.001
[3] W. Han, F. Fang, Fundamental aspects, and recent developments in electropolishing, Int. J. Mach. Tools Manuf. 139 (2019) 1-23. https://doi.org/10.1016/j.ijmachtools.2019.01.001
[4] S. Han, F. Salvatore, J. Rech, J. Bajolet, J. Courbon, Effect of abrasive flow machining (AFM) finish of selective laser melting (SLM) internal channels on fatigue performance, J. Manuf. Process. 59 (2020) 248-257. https://doi.org/10.1016/j.jmapro.2020.09.065
[5] I. Malkorra, H. Souli, F. Salvatore, P. Arrazola, J. Rech, A. Mathis, J. Rolet, Numerical modelling of the drag finishing process at a macroscopic scale to optimize surface roughness improvement on additively manufactured (SLM) Inconel 718 parts, Procedia CIRP, 108 (2022) 648-653. https://doi.org/10.1016/j.procir.2022.01.002
[6] B. Lauwers, F. Klocke, A. Klink, A.E. Tekkaya, R. Neugebauer, D. Mcintosh, Hybrid processes in manufacturing, CIRP Ann. – Manuf. Technol. 63(2) (2014) 561-583. https://doi.org/10.1016/j.cirp.2014.05.003
[7] E. Atzeni, A.R. Catalano, P.C. Priarone, A. Salmi, The technology, economy, and environmental sustainability of isotropic superfinishing applied to electron-beam melted Ti-6Al-4V components, Int. J. Adv. Manuf. Technol. 117(1) (2021) 437-453. https://doi.org/10.1007/s00170-021-07739-3
[8] P. Trubacova, S. Atieh, F. Bajard, A.G. Terricabras, G.J. Rosaz, J.P. Rigaud, Niobium micro-mechanical polishing for superconductive radio-frequency applications, euspen’s 20th International Conference & Exhibition, Geneva, CH, June 2020.
[9] D.T. Curtis, S.L. Soo, D.K. Aspinwall, C. Sage, Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points, CIRP Ann. – Manuf. Technol. 58(1) (2009) 173-176. https://doi.org/10.1016/j.cirp.2009.03.074
[10] K.P. Rajurka, D. Zhu, Improvement of electrochemical machining accuracy by using orbital electrode movement, CIRP Ann. – Manuf. Technol. 48(1) (1999) 139-142. https://doi.org/10.1016/S0007-8506(07)63150-3
[11] D. Zhu, Y.B. Zeng, Z.Y. Xu, X.Y. Zhang, Precision machining of small holes by the hybrid process of electrochemical removal and grinding, CIRP Ann. – Manuf. Technol. 60(1), (2011), 247-250. https://doi.org/10.1016/j.cirp.2011.03.130
[12] F. Klocke, R. Zunke, Removal mechanisms in polishing of silicon based advanced ceramics, CIRP Ann. – Manuf. Technol. 58(1) (2009) 491-494. https://doi.org/10.1016/j.cirp.2009.03.120
[13] H.S. Lee, D.I. Kim, J.H. An, H.J. Lee, K.H. Kim, H. Jeong, Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry, CIRP Ann. – Manuf. Technol. 59(1) (2010) 333-336. https://doi.org/10.1016/j.cirp.2010.03.114
[14] R. Komanduri, D.A. Lucca, Y. Tani, Technological advances in fine abrasive processes, CIRP Ann. – Manuf. Technol. 46(2) (1997) 545-596. https://doi.org/10.1016/S0007-8506(07)60880-4
[15] J. Rech, D. Krzak, F. Roy F, F. Salvatore, A. Gidon, S. Guérin, A new hybrid electrochemical-mechanical process (PEMEC) for polishing complex and rough parts, CIRP Ann. 71(1) (2022) 173-176. https://doi.org/10.1016/j.cirp.2022.03.011.
[16] I. Malkorra, H. Souli, C. Claudin, F. Salvatore, P. Arrazola, J. Rech, H. Seux, A. Mathis, J. Rolet, Identification of interaction mechanisms during drag finishing by means of an original macroscopic numerical model, Int. J. Mach. Tools Manuf. 168(A) (2021) 103779. https://doi.org/10.1016/j.ijmachtools.2021.103779