Extension of the modified Mohr-Coulomb fracture model by a strain rate and temperature dependence

Extension of the modified Mohr-Coulomb fracture model by a strain rate and temperature dependence

VASQUEZ RAMIREZ Dominyka, WESTER Hendrik, ROSENBUSCH Daniel, BEHRENS Bernd-Arno

download PDF

Abstract. During industrial sheet metal processes such as shear cutting, high temperatures and strain rates occur. Due to materials dependency on temperature and strain rate, the numerical fracture modelling should consider these both highly influential factors for accurate simulation results. Since the widely used Modified Mohr-Coulomb (MMC) fracture model does not take the dependency on temperature and strain rate into account, the objective of this research is therefore to extend the MMC fracture model. For the fracture characterization, miniaturised tensile tests under variation of specimen geometry, temperature and strain rate are conducted. Additionally, tensile tests with butterfly specimens under varying stress states are carried out. In order to determine material specific MMC parameters, the experimental tests are numerically depicted in Abaqus. The temperature and strain rate extension of the MMC fracture model is based on the Johnson-Cook failure model. With this approach, a temperature and strain-rate dependent MMC fracture model is developed for the dual phase steel DP980.

Keywords
Fracture Characterisation, MMC Fracture Model, Dual-Phase Steel

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: VASQUEZ RAMIREZ Dominyka, WESTER Hendrik, ROSENBUSCH Daniel, BEHRENS Bernd-Arno, Extension of the modified Mohr-Coulomb fracture model by a strain rate and temperature dependence, Materials Research Proceedings, Vol. 28, pp 1407-1416, 2023

DOI: https://doi.org/10.21741/9781644902479-152

The article was published as article 152 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. Schneider, I. Peshekhodov, A. Bouguecha, B.-A. Behrens, A new approach for user-independent determination of formability of a steel sheet sheared edge, Prod. Eng. 10 (2016) 241-252. https://doi.org/10.1007/s11740-016-0677-4
[2] B.-A. Behrens, D. Rosenbusch, H. Wester, P. Althaus, Comparison of three different ductile damage models for deep drawing simulation of high-strength steels, IOP Conf. Ser.: Mater. Sci. Eng. 1238 (2022) 12021. http://doi:10.1088/1757-899X/1238/1/012021
[3] X. Xiao, H. Pan, Y. Bai, Y. Lou, L. Chen, Application of the modified Mohr-Coulomb fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates impacted by blunt projectiles, Int. J. Impact Eng. 123 (2019) 26-37. https://doi:10.1016/j.ijimpeng.2018.09.015
[4] G. R. Johnson, W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31-48. https://doi:10.1016/0013-7944(85)90052-9
[5] Y. Bai, T. Wierzbicki, Application of extended Mohr-Coulomb criterion to ductile fracture, Int. J. Fract. 161 (2010) 1. https://doi:10.1007/s10704-009-9422-8
[6] B.-A. Behrens, K. Brunotte, H. Wester, C. Kock, D. Kildonaviciute, Determination of temperature dependence in Modified-Mohr-Coulomb failure model for process simulation of shear cutting, IOP Conf. Ser.: Mater. Sci. Eng. 1238 (2022) 12028. http://doi:10.1088/1757-899X/1238/1/012028
[7] M. J. Mirnia, M. Shamsari, Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion, J. Mater. Process. Technol. 244 (2017) 17-43. https://doi:10.1016/j.jmatprotec.2017.01.029
[8] C. R. Roth, D. Mohr, Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling, Int. J. Plast. 56 (2014) 19-44. https://doi:10.1016/j.ijplas.2014.01.003
[9] J. Cao, Z. Sun, L. Huang, Z. Yin, A unified model of ductile fracture considering strain rate and temperature under the complex stress states, J. Mater. Process. Technol. 297 (2021) 117275. https://doi:10.1016/j.jmatprotec.2021.117275
[10] R. Indhu, S. Soundarapandian and L. Vijayaraghavan, Yb: YAG laser welding of dual phase steel to aluminium alloy, J. Mater. Process. Technol. 262 (2018) 411-421. https://doi:10.1016/j.jmatprotec.2018.05.022
[11] B.-A. Behrens, K. Brunotte, H. Wester, M. Dykiert, Fracture Characterisation by Butterfly-Tests and Damage Modelling of Advanced High Strength Steels, Key Engineering Materials 883 (2021) 294-302. https://doi:10.4028/www.scientific.net/KEM.883.294
[12] H. W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids 1 (1952) 1-18. https://doi:10.1016/0022-5096(52)90002-1
[13] E. Voce, The relationship between stress and strain for homogeneous deformations, J. Inst. Met. 74 (1948) 537-562
[14] J. Qin, R. Chen, X. Wen, Y. Lin, M. Liang, F. Lu, Mechanical behaviour of dual-phase high-strength steel under high strain rate tensile loading, Materials Science and Engineering: A 586 (2013) 62-70. http://doi:10.1016/j.msea.2013.07.091
[15] E. Cadoni, N. Singh, D. Forni, M. K. Singha, N. K. Gupta, Strain rate effects on the mechanical behavior of two Dual Phase steels in tension, The European Physical Journal Special Topics 225 (2016) 986-993. http://doi:10.1140/epjst/e2016-02638-3
[16] F. Gutknecht, F. Steinbach, T. Hammer, T. Clausmeyer, W. Volk, A. E. Tekkaya, Analysis of shear cutting of dual phase steel by application of an advanced damage model, Procedia Struct. Integr 2 (2016) 1700-1707. https://doi:10.1016/j.prostr.2016.06.215