On the impact of tool material and lubrication in ball end milling of ceramic foams

On the impact of tool material and lubrication in ball end milling of ceramic foams

ROTELLA Giovanna, SANGUEDOLCE Michela, SAFFIOTI Maria Rosaria, TESTA Flaviano, UMBRELLO Domenico, FILICE Luigino

download PDF

Abstract. High porosity materials, such as ceramic foams, can be used for several applications spanning from thermal insulators, biomedical implants, molten metal filters, and others. The general practice is to adjust the shape of those ceramic foams in a pre-sintering stage to obtain complex shapes. This work aims to investigate the workability of ceramic foams in a post-sintering condition as an alternative way to overcome premature product failure during production and inhomogeneous shrinkage during sintering. An experimental campaign of ball end milling of alumina-based ceramic foams in a sintered state was carried out herein. Two different tool materials (aluminum oxide-based, diamond-coated) have been tested using two levels of spindle speed under minimum quantity lubrication (MQL) and flood lubrication regimes. The most important findings are: (i) the influence of lubricant is more pronounced analyzing the tool wear, but it has a smaller effect on surface characteristics of the workpiece, (ii) higher spindle speed improves workpiece surface quality (ii) diamond coated tools are the best available choice in terms of both tool wear and surface quality.

Keywords
Milling, Ceramic Foams, Tool Wear, Surface Quality

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: ROTELLA Giovanna, SANGUEDOLCE Michela, SAFFIOTI Maria Rosaria, TESTA Flaviano, UMBRELLO Domenico, FILICE Luigino, On the impact of tool material and lubrication in ball end milling of ceramic foams, Materials Research Proceedings, Vol. 28, pp 1331-1340, 2023

DOI: https://doi.org/10.21741/9781644902479-144

The article was published as article 144 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. Fukushima, Y.I. Yoshizawa, Fabrication of highly porous silica thermal insulators prepared by gelation-freezing route, J. Am. Ceram. Soc. 97 (2014) 713-717. https://doi.org/10.1111/jace.12723
[2] K. Sharma, M.A. Mujawar, A. Kaushik, State-of-Art Functional Biomaterials for Tissue Engineering, Front. Mater. 6 (2019) 1-10. https://doi.org/10.3389/fmats.2019.00172
[3] J.R. Brown, Foseco Non-Ferrous Foundryman’s Handbook, Butterworth-Heinemann, 2000.
[4] J.R. Brown, Foseco Ferrous Foundryman’s Handbook, Butterworth-Heinemann, 2000.
[5] A. Salomon, M. Dopita, M. Emmel, S. Dudczig, C.G. Aneziris, D. Rafaja, Reaction mechanism between the carbon bonded magnesia coatings deposited on carbon bonded alumina and a steel melt, J. Eur. Ceram. Soc. 35 (2015) 795-802. https://doi.org/10.1016/j.jeurceramsoc.2014.09.033
[6] P. Wang, K. Zhang, R. Liu, Influence of air supply pressure on atomization characteristics and dust-suppression efficiency of internal-mixing air-assisted atomizing nozzle, Powder Technol. 355 (2019) 393-407. https://doi.org/10.1016/j.powtec.2019.07.040
[7] T. Granato, F. Le Piane, F. Testa, A. Katović, R. Aiello, MCM-41 deposition on alumina ceramic foams, Mater. Lett. 64 (2010) 1622-1625. https://doi.org/10.1016/j.matlet.2010.03.063
[8] T. Granato, F. Testa, R. Olivo, Catalytic activity of HKUST-1 coated on ceramic foam, Microporous Mesoporous Mater. 153 (2012) 236-246. https://doi.org/10.1016/j.micromeso.2011.12.055
[9] F. Jun, Z. ZengFeng, C. Wei, M. Hong, L. JianXing, Computational fluid dynamics simulations of the flow field characteristics in a novel exhaust purification muffler of diesel engine, J. Low Freq. Noise Vib. Act. Control. 37 (2018) 816-833. https://doi.org/10.1177/1461348418790488
[10] G. Ambrogio, F. Gagliardi, Temperature variation during high speed incremental forming on different lightweight alloys, Int. J. Adv. Manuf. Technol. 76 (2015) 1819-1825. https://doi.org/10.1007/s00170-014-6398-y
[11] A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, Processing routes to macroporous ceramics: A review, J. Am. Ceram. Soc. 89 (2006) 1771-1789. https://doi.org/10.1111/j.1551-2916.2006.01044.x
[12] M.V. Twigg, J.T. Richardson, Fundamentals and applications of structured ceramic foam catalysts, Ind. Eng. Chem. Res. 46 (2007) 4166-4177. https://doi.org/10.1021/ie061122o.
[13] G.V. Franks, C. Tallon, A.R. Studart, M.L. Sesso, S. Leo, Colloidal processing: enabling complex shaped ceramics with unique multiscale structures, J. Am. Ceram. Soc. 100 (2017) 458-490. https://doi.org/10.1111/jace.14705
[14] F. Gagliardi, C. Ciancio, G. Ambrogio, Optimization of porthole die extrusion by Grey-Taguchi relational analysis, Int. J. Adv. Manuf. Technol. 94 (2018) 719-728. https://doi.org/10.1007/s00170-017-0917-6
[15] G. Liu, Y. Zhao, G. Wu, J. Lu, Origami and 4D printing of elastomer-derived ceramic structures, Sci. Adv. 4 (2018) 1-11. https://doi.org/10.1126/sciadv.aat0641
[16] P. Colombo, H.P. Degischer, Highly porous metals and ceramics, Mater. Sci. Technol. 26 (2010) 1145-1158. https://doi.org/10.1179/026708310X12756557336157
[17] B. Su, S. Dhara, L. Wang, Green ceramic machining: A top-down approach for the rapid fabrication of complex-shaped ceramics, J. Eur. Ceram. Soc. 28 (2008) 2109-2115. https://doi.org/10.1016/j.jeurceramsoc.2008.02.023
[18] R. Rakshit, A.K. Das, A review on cutting of industrial ceramic materials, Precis. Eng. 59 (2019) 90-109. https://doi.org/10.1016/j.precisioneng.2019.05.009
[19] G. Rotella, M. Sanguedolce, M.R. Saffioti, L. Filice, F. Testa, Strategies for Shaping of Different Ceramic Foams, Procedia Manuf. 47 (2020) 493-497. https://doi.org/10.1016/j.promfg.2020.04.345
[20] D.A. Hirschfeld, T.K. Li, D.M. Liu, Processing of porous oxide ceramics, Key Eng. Mater. 115 (1996) 65-80. https://doi.org/10.4028/www.scientific.net/kem.115.65
[21] Porosity of Ceramics by Roy W. Rice (z-lib.org).pdf, (n.d.).
[22] H. Deng, B. Latella, T. Liu, Y. Ke, L. Zhang, Processing and Property Assessment of Porous Alumina and Mullite-Alumina Ceramics, Mater. Sci. Forum. 437-438 (2003) 423-426. https://doi.org/10.4028/www.scientific.net/msf.437-438.423
[23] J.H. She, T. Ohji, Porous mullite ceramics with high strength, J. Mater. Sci. Lett. 21 (2002) 1833-1834. https://doi.org/10.1023/A:1021576104859
[24] E. Werzner, M. Abendroth, C. Demuth, C. Settgast, D. Trimis, H. Krause, S. Ray, Influence of Foam Morphology on Effective Properties Related to Metal Melt Filtration, Adv. Eng. Mater. 19 (2017) 1-10. https://doi.org/10.1002/adem.201700240
[25] O. Dávila-Maldonado, A. Adams, L. Oliveira, B. Alquist, R.D. Morales, Simulation of fluid and inclusions dynamics during filtration operations of ductile iron melts using foam filters, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 39 (2008) 818-839. https://doi.org/10.1007/s11663-008-9190-2
[26] R. Rakshit, A.K. Das, A review on cutting of industrial ceramic materials, Precis. Eng. 59 (2019) 90-109. https://doi.org/10.1016/j.precisioneng.2019.05.009
[27] P. Colombo, Conventional and novel processing methods for cellular ceramics, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (2006) 109-124. https://doi.org/10.1098/rsta.2005.1683
[28] G. Rotella, M. Rosaria, M. Sanguedolce, F. Testa, L. Filice, F. Micari, Milling of Alumina-Based Ceramic Foams: Tool Material Effects, Meccanica.