Hardware implementation of Monte Carlo and RSM method for the optimization of cutting force during turning of NiTi shape memory alloy

Hardware implementation of Monte Carlo and RSM method for the optimization of cutting force during turning of NiTi shape memory alloy

KOWALCZYK Małgorzata

download PDF

Abstract. This study was conducted to understand the exact turning of the NiTi shape memory alloy and consisted of four stages: experimental work, function modelling using RSM method, Monte Carlo method optimization and hardware implementation of Monte Carlo method . This article has the following main objectives: to develop a framework for solving machining optimization problems using the Monte Carlo method and hardware implementation of MC method. The solutions presented in this paper are important from the point of view of practical solutions related to the prediction and optimization of the cutting forces components Fc, Fp and Ff during turning of NiTi shape memory alloy.

NiTi Shape Memory Alloy, Monte Carlo and RSM Methods, Optimization

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: KOWALCZYK Małgorzata, Hardware implementation of Monte Carlo and RSM method for the optimization of cutting force during turning of NiTi shape memory alloy, Materials Research Proceedings, Vol. 28, pp 1275-1284, 2023

DOI: https://doi.org/10.21741/9781644902479-138

The article was published as article 138 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] M. Kowalczyk, Cutting force prediction in ball-end milling of Ni-Ti alloy, Proc. of SPIE 11176 (2019) 11176650-1-11176650-12. https://doi.org/10.1117/12.2536757
[2] R. Agrawal, N. Kumar, K. Parvez, A. Srivastava, M. Sarfaraz Alam, Optimization of cutting force via variable feed rate in dry turning lathe of AISI 304, Mater. Today Proc. 64 (2022) 1182-1187. https://doi.org/10.1016/j.matpr.2022.03.479
[3] S. Lakshmanan, M. Pradeep Kumar, M. Dhananchezian, Optimization of turning parameter on surface roughness, cutting force and temperature through TOPSIS, Mater. Today Proc. in press (2022). https://doi.org/10.1016/j.matpr.2022.09.209
[4] A. Tzotzis, N. Tapoglou, R. K. Verma, P. Kyratsis, 3D-FEM Approach of AISI-52100 Hard Turning: Modelling of Cutting Forces and Cutting Condition Optimization, Machines 10 (2022) 1-16. https://doi.org/10.3390/machines10020074
[5] M. Kowalczyk, K. Tomczyk, Procedure for Determining the Uncertainties in the Modeling of Surface Roughness in the Turning, Mater. 13 (2020) 1-14. https://doi.org/10.3390/ma13194338
[6] B. Dash, M. Das, M. Das, T.R. Mahapatra, D. Mishra, A concise review on machinability of NiTi shape memory alloys, Mater. Today Proc. 18 (2019) 5141-5150. https://doi.org/10.1016/j.matpr.2019.07.511
[7] E. Kaya, I. Kaya, A review on machining of NiTi shape memory alloys: the process and post process perspective, Int. J. Adv. Manuf. Technol. 100 (2019) 2045-2087. https://doi.org/10.1007/s00170-018-2818-8
[8] H. Shizuka, K. Sakai, H. Yang, K. Sonoda, T. Nagare, Y. Kurebayashi, K. Hayakawa, Difficult cutting property of NiTi alloy and its mechanism, J. Manuf. Mater. Process. 4 (2020) 1-15. https://doi.org/10.3390/jmmp4040124
[9] Y. Zhao, K. Guo, J. Li, J. Sun, Investigation on machinability of NiTi shape memory alloys under different cooling conditions, Int. J. Adv. Manuf. Technol. 116 (2021) 1913-1923. https://doi.org/10.1007/s00170-021-07563-9
[10] M. Kowalczyk, Application of the Monte Carlo method for the optimization of surface roughness during precise turning of NiTi shape memory alloy, Proc. of SPIE 10808 (2018) 58 108084P-1 – 108084P-9. https://doi.org/10.1117/12.2501421
[11] M. Kowalczyk, Application of Taguchi method to optimization of surface roughness during precise turning of NiTi shape memory alloy, Proc. of SPIE 10445 (2017) 104455G-1 104455G-11. https://doi.org/10.1117/12.2281062
[12] Y.Z. Zhao. K. Guo, V. Sivalingam, J.-F. Li, Q.-D. Sun, Z.-J. Zhu, J. Sun, Surface integrity evolution of machined NiTi shape memory alloys after turning process, Adv. Manuf. 9 (2021) 446-456. https://doi.org/10.1007/s40436-020-00330-1
[13] H. Zahia, Y.M. Athmane, B. Lakhdar, M. Tarek, On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert, Int. J. Ind. Eng. Comput. 6 (2015) 267-284. https://doi.org/10.5267/j.ijiec.2014.10.003
[14] Y. Sun, F. Ren, D. Guo, Z. Jia, Estimation and experimental validation of cutting forces in ball-end milling of sculptured surfaces, Int. J. Mach. Tools Manuf. 49 (2009) 1238-1244. https://doi.org/10.1016/j.ijmachtools.2009.07.015
[15] Y. Song, H. Cao, W. Zheng, D. Qu, L. Liu, C. Yan, Cutting force modeling of machining carbon fiber reinforced polymer (CFRP) composites: A review, Compos. Struct. 299 (2022). https://doi.org/10.1016/j.compstruct.2022.116096
[16] R.A. Mali, M.D. Agrahari, T.V.K. Gupta, FE based simulation and experimental validation of forces in dry turning of aluminium 7075, Mater. Today Proc. 27 (2019) 2319-2323. https://doi.org/10.1016/j.matpr.2019.09.120
[17] C.S. Sumesh, A. Ramesh, Optimization and finite element modeling of orthogonal turning of Ti6Al4V alloys: A comparative study of different optimization techniques, Eng. Solid Mech. 11 (2023) 11-22. https://doi.org/10.5267/j.esm.2022.11.002
[18] S.M. Abdur Rob, A.K. Srivastava, Turning of Carbon Fiber Reinforced Polymer (CFRP) Composites: Process Modeling and Optimization using Taguchi Analysis and Multi-Objective Genetic Algorithm, Manuf. Lett. 33 (2022) 29-40. https://doi.org/10.1016/j.mfglet.2022.07.012
[19] N. A. Sristi, P. B. Zaman, N. R. Dhar, Multi-response optimization of hard turning parameters: a comparison between different hybrid Taguchi-based MCDM methods, Int. J. Interact. Des. Manuf. 16 (2022) 1779-1795. https://doi.org/10.1007/s12008-022-00849-6
[20] N. Li, Y.J. Chen, D.D. Kong, Multi-response optimization of Ti-6Al-4V turning operations using Taguchi-based grey relational analysis coupled with kernel principal component analysis, Adv. Manuf. 7 (2019) 142-154. https://doi.org/10.1007/s40436-019-00251-8
[21] B. Hamadi, M.A. Yallese, L. Boulanouar, M. Nouioua, A. Hammoudi, RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel, Struct. Eng. Mech. 84 (2022) 17-33. https://doi.org/10.12989/sem.2022.84.1.017
[22] A. Thakur, V. Guleria, R. Lal, Multi-response optimization in turning of EN-24 steel under MQL, Eng. Res. Express. 4 (2022). https://doi.org/10.1088/2631-8695/ac7a0c
[23] R. Kluz, W. Habrat, M. Bucior, K. Krupa, J. Sęp, Multi-criteria optimization of the turning parameters of Ti-6Al-4V titanium alloy using the Response Surface Methodology, Eksploat. i Niezawodn. 24 (2022) 668-676. https://doi.org/10.17531/ein.2022.4.7
[24] T. Palaniappan, P. Subramaniam, Experimental Investigation and Prediction of Mild Steel Turning Performances Using Hybrid Deep Convolutional Neural Network-Based Manta-Ray Foraging Optimizer, J. Mater. Eng. Perform. 31 (2022) 4848-4863. https://doi.org/10.1007/s11665-021-06552-z
[25] D. Peng, H. Li, Y. Dai, Z. Wang, J. Ou, Prediction of milling force based on spindle current signal by neural networks, Measurement 205 (2022) 112153. https://doi.org/10.1016/j.measurement.2022.112153
[26] A. Alalawin, W.H. AlAlaween, M.A. Shbool, O. Abdallah, L. Al-Qatawneh, An interpretable predictive modelling framework for the turning process by the use of a compensated fuzzy logic system, Prod. Manuf. Res. 10 (2022) 89-107. https://doi.org/10.1080/21693277.2022.2064359
[27] E. Altas, O. Erkan, D. Ozkan, H. Gokkaya, Optimization of Cutting Conditions, Parameters, and Cryogenic Heat Treatment for Surface Roughness in Milling of NiTi Shape Memory Alloy, J. Mater. Eng. Perform. 31 (2022) 7315–7327. https://doi.org/10.1007/s11665-022-06769-6
[28] Y. Kaynak, H.E. Karaca, R.D. Noebe, I.S. Jawahir, Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining, Wear 306 (2013) 51-63. https://doi.org/10.1016/j.wear.2013.05.011
[29] K. Weinert, V. Petzoldt, D. Kötter, Turning and drilling of NiTi shape memory alloys, CIRP Ann. – Manuf. Technol. 53 (2004) 65-68. https://doi.org/10.1016/S0007-8506(07)60646-5
[30] M. Subramanian, M. Sakthivel, K. Sooryaprakash, R. Sudhakaran, Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm, Procedia Eng. 64 (2013) 690-700. https://doi.org/10.1016/j.proeng.2013.09.144