Orthogonal cutting with additively manufactured grooving inserts made from HS6-5-3-8 high-speed steel

Orthogonal cutting with additively manufactured grooving inserts made from HS6-5-3-8 high-speed steel

KELLIGER Tobias, MEURER Markus, BERGS Thomas

download PDF

Abstract. Additive manufacturing (AM) of cutting materials such as high-speed steel (HSS) is very challenging. So far, the impact of the layer-by-layer manufacturing technique onto the AM tool performance during machining is widely unknown. In this study, the performance characteristics of AM grooving inserts manufactured from HS6-5-3-8 (ASP 2030) in AM Laser Powder Bed Fusion (LPBF) process were investigated in fundamental cutting experiments. Six different workpiece materials were analyzed and two different parameter sets for the LPBF process investigated. All AM grooving inserts withstood the thermal and mechanical stresses during machining of the investigated materials. Based on these results, AM threading tools manufactured from HS6-5-3-8 will be investigated in a next step, using the geometrical freedom of the AM process for an adapted channel and outlet nozzle design of the internal cutting fluid supply.

Keywords
Orthogonal Cutting, Chip Formation, Additive Manufacturing, LPBF, HSS, ASP 2030, HS6-5-3-8

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: KELLIGER Tobias, MEURER Markus, BERGS Thomas, Orthogonal cutting with additively manufactured grooving inserts made from HS6-5-3-8 high-speed steel, Materials Research Proceedings, Vol. 28, pp 1235-1244, 2023

DOI: https://doi.org/10.21741/9781644902479-134

The article was published as article 134 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] T. Scherer, Beanspruchungs- und fertigungsgerechte Gestaltung additiv gefertigter Zerspanwerkzeuge, Dissertation, TU Darmstadt, Darmstadt, 2020.
[2] F.A.M. Vogel, S. Berger, E. Özkaya, D. Biermann, Vibration Suppression in Turning TiAl6V4 Using Additively Manufactured Tool Holders with Specially Structured, Particle Filled Hollow Elements, Procedia Manuf. 40 (2019) 32-37. https://doi.org/10.1016/j.promfg.2020.02.007
[3] T. Lakner, High-pressure cutting fluid supply in milling, Dissertation, RWTH Aachen University, Aachen, 2021.
[4] Dr. Mapal, K.G. Kress, Lasersintern erweitert Fertigungsmöglichkeiten von Präzisionswerkzeugen, Diamond Business, 2017.
[5] A.G. Urma Werkzeugfabrik, Serien-Drehwerkzeug mit innenliegenden Kanalstrukturen, Maschinenbau Schweiz No. 11 (2019) 14-15.
[6] T. Kulmala, Geringeeres Gewicht – höhere Leistung, 2019. Available: https://www.sandvik.coromant.com/de-de/mww/pages/t_cm390am.aspx. (accessed 20 July 2020).
[7] M. Padmakumar, Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting (SLM), Selective Laser Sintering (SLS) and Binder Jet 3D Printing (BJ3DP) Techniques, Laser. Manuf. Mater. Process. 7 (2020) 338-371. https://doi.org/10.1007/s40516-020-00124-0
[8] B.D. Kernan, E.M. Sachs, M.A. Oliveira, M.J. Cima, Three-dimensional printing of tungsten carbide-10wt% cobalt using a cobalt oxide precursor, Int. J. Refract. Metal. Hard Mater. 25 (2007) 82-94. https://doi.org/10.1016/j.ijrmhm.2006.02.002
[9] T. Schwanekamp, Pulverbettbasiertes Laserstrahlschmelzen von Hartmetallen zur additiven Herstellung von Zerspanwerkzeugen, Dissertation, Ruhr-Universität Bochum, 2021. https://doi.org/10.13154/294-7802
[10] M. Weigold, T. Scherer, E. Schmidt, M. Schwentenwein, T. Prochaska, Additive Fertigung keramischer Schneidstoffe, wt Werkstattstechnik online 110 (2020) 2-6.
[11] J. Saewe, C. Gayer, A. Vogelpoth, J.H. Schleifenbaum, Feasability Investigation for Laser Powder Bed Fusion of High-Speed Steel AISI M50 with Base Preheating System, BHM Berg- und Hüttenmännische Monatshefte 164 (2019) 101-107. https://doi.org/10.1007/s00501-019-0828-y
[12] F. Klocke, Manufacturing Processes 1: Cutting, Springer, Berlin, Heidelberg, 2011.
[13] Wohlers Associates, Wohlers Report 2022: 3D printing and additive manufacturing global state of the industry, Wohlers Associates, Fort Collins (Colorado), 2022.
[14] K. Kempen, B. Vrancken, S. Buls, L. Thijs, J. van Humbeeck, J.-P. Kruth, Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating, J. Manuf. Sci. Eng. 136 (2014). https://doi.org/10.1115/1.4028513
[15] L. Zumofen, C. Beck, A. Kirchheim, H.-J. Dennig, Quality Related Effects of the Preheating Temperature on Laser Melted High Carbon Content Steels, Industrializing Additive Manufacturing – Proceedings of Additive Manufacturing in Products and Applications – AMPA2017 (2018) pp. 210-219. https://doi.org/10.1007/978-3-319-66866-6_21