A hybrid VFM-FEMU approach to calibrate 3D anisotropic plasticity models for sheet metal forming

A hybrid VFM-FEMU approach to calibrate 3D anisotropic plasticity models for sheet metal forming

ROSSI Marco, LATTANZI Attilio, AMODIO Dario

download PDF

Abstract. Recently, inverse methods such as the Virtual Fields Method (VFM) or the Finite Element Model Updating (FEMU), coupled with a full-field measurement technique, have been distinguished as efficient strategies for the calibration of complex plasticity models [1]. The use of heterogeneous strain fields, in fact, offers a larger amount of material information compared to the classical standard test, enriching the identification process and, in general, reducing the experimental effort for the calibration [2]. Here, an inverse identification framework is proposed for the calibration of a full-scale anisotropic plasticity model. The inverse identification procedure employs full-field information from two main experiments: a tensile test on double notched specimens for the calibration of the coefficients expressing the planar anisotropy, and an innovative Iosipescu-like test for the through-thickness shear ones. A hybrid approach is used with the VFM employed to identify the planar coefficients and the FEMU for the through thickness ones.

Keywords
Inverse Methods, 3D Anisotropic Plasticity, Full-Field Measurements

Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: ROSSI Marco, LATTANZI Attilio, AMODIO Dario, A hybrid VFM-FEMU approach to calibrate 3D anisotropic plasticity models for sheet metal forming, Materials Research Proceedings, Vol. 28, pp 1203-1210, 2023

DOI: https://doi.org/10.21741/9781644902479-131

The article was published as article 131 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] L. Ma, Z. Wang, The effects of through-thickness shear stress on the formability of sheet metal-A review, J. Manuf. Process. 71 (2021) 269-289. https://doi.org/10.1016/j.jmapro.2021.09.019
[2] F. Pierron, M. Grédiac, Towards Material Testing 2.0. A review of test design for identification of constitutive parameters from full‐field measurements, Strain 57 (2021) 12370. https://doi.org/10.1111/str.12370
[3] M. Rossi, A. Lattanzi, L. Morichelli, J.M. Martins, S. Thullier, A. Andrade-Campos,
S. Coppieters, Testing methodologies for the calibration of advanced plasticity models for sheet metals: A review, Strain 58 (2022) 12426. https://doi.org/10.1111/str.12426
[4] D. Lecompte, S. Cooreman, S. Coppieters, J. Vantomme, H. Sol, D. Debruyne, Parameter identification for anisotropic plasticity model using digital image correlation, Eur. J. Comput. Mech. 18 (2009) 393-418. https://doi.org/10.3166/ejcm.18.393-418
[5] F. Grytten, B. Holmedal, O.S. Hopperstad, T. Børvik, Evaluation of identification methods for YLD2004-18p, Int. J. Plast. 24 (2008) 2248-2277. https://doi.org/10.1016/j.ijplas.2007.11.005
[6] M. Grédiac, F. Pierron, Applying the Virtual Fields Method to the identification of elasto-plastic constitutive parameters, Int. J. Plast. 22 (2006) 602-627. https://doi.org/10.1016/j.ijplas.2005.04.007
[7] M. Rossi, A. Lattanzi, F. Barlat, A general linear method to evaluate the hardening behaviour of metals at large strain with full-field measurements, Strain 54 (2018) 12265. https://doi.org/10.1111/str.12265
[8] F. Pierron, M. Grediac, The virtual fields method: Extracting constitutive mechanical parameters from full-field deformation measurements, 2012.
[9] M. Rossi, F. Pierron, Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields, Comput. Mech. 49 (2012) 53-71. https://doi.org/10.1007/s00466-011-0627-0
[10] M. Rossi, F. Pierron, M. Štamborská, Application of the virtual fields method to large strain anisotropic plasticity, Int. J. Solids Struct. 97-98 (2016) 322-335. https://doi.org/10.1016/j.ijsolstr.2016.07.015
[11] A. Lattanzi, F. Barlat, F. Pierron, A. Marek, M. Rossi, Inverse identification strategies for the characterization of transformation-based anisotropic plasticity models with the non-linear VFM, Int. J. Mech. Sci. 173 (2020) 105422. https://doi.org/10.1016/j.ijmecsci.2020.105422
[12] J.M.P. Martins, A. Andrade-Campos, S. Thuillier, Calibration of anisotropic plasticity models using a biaxial test and the virtual fields method, Int. J. Solid. Struct. 172-173 (2019) 21-37. https://doi.org/10.1016/j.ijsolstr.2019.05.019
[13] M. Rossi, A. Lattanzi, F. Barlat, J.H. Kim, Inverse identification of large strain plasticity using the hydraulic bulge-test and full-field measurements, Int. J. Solid. Struct. 242 (2022) 111532. https://doi.org/10.1016/j.ijsolstr.2022.111532
[14] K. Denys, S. Coppieters, M. Seefeldt, D. Debruyne, Multi-DIC setup for the identification of a 3D anisotropic yield surface of thick high strength steel using a double perforated specimen, Mech. Mater. 100 (2016) 96-108. http://doi.org/10.1016/j.mechmat.2016.06.011
[15] S. Avril, M. Grédiac, F. Pierron, Sensitivity of the Virtual Fields Method to noisy data, Comp. Mech. 34 (2004) 439-452.
[16] A. Marek, F. Davis, F. Pierron, Sensitivity-based virtual fields for the non-linear Virtual Fields Method, Comp. Mech. 60 (2017) 409-431. https://doi.org/10.1007/s00466-017-1411-6