Optical absorption and conduction of copper carbon nanotube composite for additive manufacturing

Optical absorption and conduction of copper carbon nanotube composite for additive manufacturing

AYUB Hasan, KHAN Lehar Asip, MCCARTHY Eanna, AHAD Inam Ul, SREENILAYAM Sithara P., FLEISCHER Karsten, BRABAZON Dermot

download PDF

Abstract. The applications of nanotechnology are growing widely as nanoscale structures provide unique properties such as high surface area unique plasmonic response and excellent conductivity that can be utilized for a wide range of applications. Optical absorption expansion of copper using carbon nanotube composite is one of the applications of nanotechnology for additive manufacturing of metals, particularly copper. Cu-CNTs mixtures at different percentage concentrations will be prepared via Resodyn, an acoustic mixer machine. Pure copper powder will be used with a spherical powder shape. The evaluation of the samples will be performed via spectroscopy to determine the reflection and thermal absorption of the light by the Cu-CNTs composition. The enhancement in the thermal absorption of Cu powder via additions of CNTs leads to the improvement in the bonding of particles by absorbing laser power. Due to the lower thermal expansion coefficient, sintering is possible at lower laser powers < 40%. Keywords
Optical Absorption, Carbon Nanotube, Laser Sintering, Thermal-Electrical Expansion, Additive Manufacturing

Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: AYUB Hasan, KHAN Lehar Asip, MCCARTHY Eanna, AHAD Inam Ul, SREENILAYAM Sithara P., FLEISCHER Karsten, BRABAZON Dermot, Optical absorption and conduction of copper carbon nanotube composite for additive manufacturing, Materials Research Proceedings, Vol. 28, pp 111-118, 2023

DOI: https://doi.org/10.21741/9781644902479-13

The article was published as article 13 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] P. Roy, A.D. Bolshakov, Temperature-controlled switching of plasmonic response in gallium core-shell nanoparticles, J. Phys. D. Appl. Phys. 53 (2020) 465303. https://doi.org/10.1088/1361-6463/abaae2
[2] S. Durairaj, B. Sidhureddy, J. Cirone, A. Chen, Nanomaterials-based electrochemical sensors for in vitro and in vivo analyses of neurotransmitters, Appl. Sci. 8 (2018) 1504. https://doi.org/10.3390/app8091504
[3] S.P. Sreenilayam, I.U. Ahad, V. Nicolosi, V. Acinas Garzon, D. Brabazon, Advanced materials of printed wearables for physiological parameter monitoring, Mater. Today 32 (2020) 147-177. https://doi.org/10.1016/j.mattod.2019.08.005
[4] A. Syafiuddin, M.A. Fulazzaky, S. Salmiati, A.B.H. Kueh, M. Fulazzaky, M.R. Salim, Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: an exclusive review, Nanotechnol. Environ. Eng. 5 (2020) 1-18. https://doi.org/10.1007/s41204-019-0065-3
[5] L.J. Gibson, G. Editor, Cellular Solids 2003 (2021) 270-274.
[6] W. Tianquing, S.L. Poh, M. John, S. Chen-Nan, L.A Beng, Pool Boiling Heat Transfer Enhancement with Porous Fin Arrays Manufactured by Selective Laser Melting, Conference: 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 2019, pp. 1107-1114, doi: 10.1109/ITHERM.2019.8757295.
[7] C.Y. Yap, C.K.Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh,S.L. Sing, Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2 (2015) 041101. https://doi.org/10.1063/1.4935926
[8] R. Neugebauer, B. Mller, M. Gebauer, T. Tppel, Additive manufacturing boosts efficiency of heat transfer components, Assem. Autom. 31 (2011) 344-347. https://doi.org/10.1108/01445151111172925
[9] P.A. Lykov, E.V. Safonov, A.M. Akhmedianov, Selective laser melting of copper, Mater. Sci. Forum 843 (2016) 284-288. https://doi.org/10.4028/www.scientific.net/MSF.843.284
[10] S.D. Jadhav, S. Dadbakhsh, L. Goossens, J.P. Kruth, J. Van Humbeeck, K. Vanmeensel, Influence of selective laser melting process parameters on texture evolution in pure copper, J. Mater. Process. Technol. 270 (2019) 47-58. https://doi.org/10.1016/j.jmatprotec.2019.02.022
[11] M. Colopi, L. Caprio, A.G. Demir, B. Previtali, Selective laser melting of pure Cu with a 1 kW single mode fiber laser, Procedia CIRP 74 (2018) 59-63. https://doi.org/10.1016/j.procir.2018.08.030
[12] T.T. Ikeshoji, K. Nakamura, M. Yonehara, K. Imai, H. Kyogoku, Selective Laser Melting of Pure Copper, JOM 70 (2018) 396-400. https://doi.org/10.1007/s11837-017-2695-x
[13] M. Colopi, A.G. Demir, L. Caprio, B. Previtali, Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser, Int. J. Adv. Manuf. Technol. 104 (2019) 2473-2486. https://doi.org/10.1007/s00170-019-04015-3
[14] D. Heußen, Green Light for New 3D Printing Process. Available online: https://www.ilt.fraunhofer.de/en/press/press-releases/press-release-2017/press-release-2017-08-30.html (accessed 31 January 2023).
[15] H. Ayub, L.A. Khan, E. McCarthy, I.U. Ahad, K. Fleischer, D. Brabazon, Investigating the morphology, hardness, and porosity of copper filters produced via Hydraulic Pressing, J. Mater. Res. Technol. 19 (2022) 208-219. https://doi.org/10.1016/j.jmrt.2022.05.012