On the comparison of heterogeneous mechanical tests for sheet metal characterization

On the comparison of heterogeneous mechanical tests for sheet metal characterization

GONÇALVES Mafalda, OLIVEIRA Miguel Guimarães, THUILLIER Sandrine, ANDRADE-CAMPOS António

download PDF

Abstract. The characterization of sheet metal behavior is of utmost importance for the accurate virtualization of sheet metal forming processes. Newly proposed mechanical testing approaches are overcoming the use of standard mechanical tests. Test configurations with more complex geometries present richer mechanical fields and, therefore, provide a higher quantity of valuable information about the material behavior in a more efficient manner. To extract that information, full-field measurement techniques such as Digital Image Correlation are being used. Although several test designs have already been proposed, the choice of the best one to calibrate a chosen mechanical model is still an issue. This work aims at proposing Key Performance Indicators (KPIs) that are able to rank mechanical tests by their potential to enhance the material behavior characterization process. These metrics evaluate quantitatively the quality and the importance of the data that each test can provide. The potential of three test designs to characterize accurately sheet metal mechanical behavior is analyzed using the proposed KPIs. From a uniaxial tensile loading test up to rupture, the numerical mechanical information is extracted, and the performance of each test is evaluated and compared.

Heterogeneous Tests, KPIs, Material Behavior, Sheet Metal

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: GONÇALVES Mafalda, OLIVEIRA Miguel Guimarães, THUILLIER Sandrine, ANDRADE-CAMPOS António, On the comparison of heterogeneous mechanical tests for sheet metal characterization, Materials Research Proceedings, Vol. 28, pp 1121-1130, 2023

DOI: https://doi.org/10.21741/9781644902479-123

The article was published as article 123 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] J.H. Kim, F. Barlat, F. Pierron, M.G. Lee, Determination of Anisotropic Plastic Constitutive Parameters Using the Virtual Fields Method, Exp. Mech. 54 (2014) 1189-204. https://doi.org/10.1007/s11340-014-9879-x
[2] E.M.C. Jones, J.D. Carroll, K.N. Karlson, S.L.B. Kramer, R.B. Lehoucq, P.L. Reu, D.Z. Turner, Parameter covariance and non-uniqueness in material model calibration using the Virtual Fields Method, Comput. Mater. Sci. 152 (2018) 268-290. https://doi.org/10.1016/j.commatsci.2018.05.037
[3] T. Pottier, P. Vacher, F. Toussaint, H. Louche, T. Coudert, Out-of-plane Testing Procedure for Inverse Identification Purpose: Application in Sheet Metal Plasticity, Exp. Mech. 52 (2012) 951–963. https://doi.org/10.1007/s11340-011-9555-3
[4] N. Souto, A. Andrade-Campos, S. Thuillier, Mechanical design of a heterogeneous test for material parameters identification, Int. J. Mater. Form. 10 (2016) 353-367. https://doi.org/10.1007/s12289-016-1284-9
[5] M. Conde, Y. Zhang, J. Henriques, S. Coppieters, A. Andrade-Campos, Design and validation of a heterogeneous interior notched specimen for inverse material parameter identification, Finite Elem. Anal. Des. 214 (2023) 103866.
[6] M. Gonçalves, A. Andrade-Campos, B. Barroqueiro, On the design of mechanical heterogeneous specimens using multilevel topology optimization, Adv. Eng. Softw. 175 (2023) 103314.
[7] B. Barroqueiro, A. Andrade-Campos, J. Dias-de-Oliveira, R.A.F. Valente, Design of mechanical heterogeneous specimens using topology optimization, Int. J. Mech. Sci. 181 (2020) 105764. https://doi.org/10.1016/j.ijmecsci.2020.105764
[8] P. Wang, F. Pierron, M. Rossi, P. Lava, O.T. Thomsen, Optimised experimental characterisation of polymeric foam material using DIC and the virtual fields method, Strain 52 (2016) 59-79. https://doi.org/10.1111/str.12170
[9] L. Chamoin, C. Jailin, M. Diaz, L. Quesada, Coupling between topology optimization and digital image correlation for the design of specimen dedicated to selected material parameters identification, Int. J. Solids Struct. 193-194 (2020) 270-286. https://doi.org/10.1016/j.ijsolstr.2020.02.032
[10] X. Gu, F. Pierron, Towards the design of a new standard for composite stiffness identification, Compos. Part A Appl. Sci. Manuf. 91 (2016) 448-460. https://doi.org/10.1016/j.compositesa.2016.03.026
[11] M. Rossi, M. Badaloni, P. Lava, D. Debruyne, F. Pierron, A procedure for specimen optimization applied to material testing in plasticity with the virtual fields method, AIP Conf. Proc. 1769 (2016) 200016. https://doi.org/10.1063/1.4963634
[12] N. Souto, S. Thuillier, A. Andrade-Campos, Design of an indicator to characterize and classify mechanical tests for sheet metals, Int. J. Mech. Sci. 101-102 (2015) 252-271. https://doi.org/10.1016/j.ijmecsci.2015.07.026
[13] M. Conde, A. Andrade-Campos, M.G. Oliveira, J.M.P. Martins, Design of heterogeneous interior notched specimens for material mechanical characterization, Esaform 2021, Liège, Belgique, 2021.
[14] F. Pierron, M. Grédiac, Towards Material Testing 2.0. A review of test design for identification of constitutive parameters from full-field measurements, Strain 57 2021) 1-22. https://doi.org/10.1111/str.12370
[15] M. Grédiac, The use of full-field measurement methods in composite material characterization: Interest and limitations, Compos. Part A Appl. Sci. Manuf. 35 (2004) 751-761. https://doi.org/10.1016/j.compositesa.2004.01.019
[16] S. Avril, M. Bonnet, A.S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron, Overview of identification methods of mechanical parameters based on full-field measurements, Exp. Mech. 48 (2008) 381-402. https://doi.org/10.1007/s11340-008-9148-y
[17] F. Pierron, M. Grédiac, The virtual fields method: Extracting constitutive mechanical parameters from full-field deformation measurements, Springer Verlag, 2012.
[18] M.G. Oliveira, S. Thuillier, A. Andrade-Campos, Evaluation of heterogeneous mechanical tests for model calibration of sheet metals, J. Strain. Anal. Eng. Des. 57 (2022) 208-224. https://doi.org/10.1177/03093247211027061
[19] M. Rossi, F. Pierron, M. Štamborská, Application of the virtual fields method to large strain anisotropic plasticity, Int. J. Solids. Struct. 97-98 (2016) 322-335. https://doi.org/10.1016/j.ijsolstr.2016.07.015
[20] M. Gonçalves, A. Andrade-Campos, S. Thuillier, On the topology design of a mechanical heterogeneous specimen using geometric and material nonlinearities, IOP Conf. Ser. Mater. Sci. Eng. 1238 (2022) 012055. https://doi.org/10.1088/1757-899X/1238/1/012055
[21] F. Ozturk, S. Toros, S. Kilic, Effects of Anisotropic Yield Functions on Prediction of Forming Limit Diagrams of DP600 Advanced High Strength Steel, Procedia Eng. 81 (2014) 760-765. https://doi.org/10.1016/j.proeng.2014.10.073
[22] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets – Part 1: Theory, Int. J. Plast. 19 (2003) 1297-1319. https://doi.org/10.1016/S0749-6419(02)00019-0
[23] J. Aquino, A. Andrade-Campos, J.M.P. Martins, S. Thuillier, Design of heterogeneous mechanical tests: Numerical methodology and experimental validation, Strain 55 (2019) 1-18. https://doi.org/10.1111/str.12313
[24] J.D. Thoby, T. Fourest, B. Langrand, D. Notta-Cuvier, E. Markiewicz, Robustness of specimen design criteria for identification of anisotropic mechanical behaviour from heterogeneous mechanical fields, Comput. Mater. Sci. 207 (2022) 111260. https://doi.org/10.1016/j.commatsci.2022.111260