Modelling of the weld seam in the forming simulation of friction stir welded tailored blanks

Modelling of the weld seam in the forming simulation of friction stir welded tailored blanks

BACHMANN Maximilian, RIEDMÜLLER Kim, LIEWALD Mathias, MERTEN Mathias

download PDF

Abstract. In former papers methods to join different aluminium or different steel plates having same thicknesses are presented. These blanks are often joined by friction stir welding using flat tools. In order to increase the lightweight potential, the Materials Testing Institute of the University of Stuttgart developed a modified friction stir welding process to join aluminium and steel plates of different thicknesses. The process differs from the conventional method in stir welding tool used, which consists of a stepped welding pin and enables combined lap-and-butt joints to be produced. In this paper, a suitable material model is presented to describe this weld seam, allowing the forming behavior of hybrid sheet metal compounds to be realistically simulated.

Keywords
Tailor Welded Blanks, Material Modelling, Sheet Forming

Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: BACHMANN Maximilian, RIEDMÜLLER Kim, LIEWALD Mathias, MERTEN Mathias, Modelling of the weld seam in the forming simulation of friction stir welded tailored blanks, Materials Research Proceedings, Vol. 28, pp 1075-1082, 2023

DOI: https://doi.org/10.21741/9781644902479-118

The article was published as article 118 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Birkert, S. Haage, M. Straub, Umformtechnischer Herstellung komplexer Karosseriebauteile – Auslegung von Ziehanlagen. Springer Verlag Berlin Heidelberg, 2013.
[2] F. Henning, E. Moeller, Handbuch Leichtbau – Methoden, Werkstoffe, Fertigung. Carl Hanser Verlag München Wien, 2020.
[3] M.W. Mahoney, C. Rhodes, J.G. Flinott, W.H. Bingel, RR. Spurling, Properties of friction stir-welded 7075 T651 aluminium, Metall. Mater. Trans. A 29 (1998) 1955-1964. https://doi.org/10.1007/s11661-998-0021-5
[4] A.K. Lakshminarayanan, V. Balasubramanian, K. Elangovan, Effect of welding processes on tensile properties of AA 6061 aluminium alloy joints, Int. J. Adv. Manuf. Technol. 40 (2009) 286-296. https://doi.org/10.1007/s00170-007-1325-0
[5] W.M. Thomas, E. Nicholas, J. Needham, M. Murch, P. Temple-Smith, C.J. Dawes, Great Britain Patent Application No. 9125978.8 (1991).
[6] H.B. Schmidt, J.H. Hattel, Thermal Modelling of friction stir welding, Scirpta Mater. 58 (2009) 332-337. https://doi.org/10.1016/j.scriptamat.2007.10.008
[7] M. Werz, Experimentelle und numerische Untersuchungen des Rührreibschweißens von Aluminium- und Aluminium-Stahl-Verbindungen zur Verbesserung der mechanischen Eigenschaften, Materialprüfungsanstalt (MPA) Universität Stuttgart, Dissertation, 2020.
[8] T. Wanatabe, H. Takayama, A. Yanagiswa, Joining of aluminium to steel by friction stir welding, J. Mater. Process. Technol. 178 (2006) 342-349. http://doi.org/10.1016%2Fj.jmatprotec.2006.04.117
[9] H. Uzun, C. Donne, A. Arganotto, T. Ghidini, Friction stir welding of dissimilar AL 6013-T4 to X5CrNi18-10 stainless steel, Mater. Des. 26 (2005) 41-46. https://doi.org/10.1016/j.matdes.2004.04.002
[10] T. Tanaka, T. Hirata, N. Shinomiya, N. Shirakawa, Analyses of material flow in sheet forming of friction-stir welds on alloys of mild steel and aluminium, J. Mater. Process. Technol. 22 (2015) 115-134. https://doi.org/10.1016/J.JMATPROTEC.2015.06.030
[11] O. Singar, M. Merklein, Study on the formability characteristics of the weld seam of Aluminium Steel Tailor Hybrid Blanks, Key Eng. Mater. 549 (2013) 302-310. https://doi.org/10.4028/www.scientific.net/KEM.549.302
[12] F. Panzer, M. Schneider, M. Werz, S. Weihe, Friction stir welded and deep drawn multi-matieral tailor welded blanks, Materials Testing, Carl Hanser Verlag, München, 2019.
[13] DIN Deutsches Institut für Normung e.V., Metallische Werkstoffe – Bestimmung der Grenzformänderungskurve für Bleche und Bänder – Teil 2: Bestimmung von Grenzformänderungskurven im Labor, Beuth Verlag GmbH, Berlin, 2021.
[14] W. Lee, K.-H. Chung, D. Kim, J. Kim, C. Kim, K. Okamoto R.H. Wagoner, K. Chung, Experimental and numerical study on formability of friction stir welded TWB sheets based on hemispherical dome stretch tests, Int. J. Plast. 25 (2009) 1626–1654. http://doi.org/10.1016/j.ijplas.2008.08.005
[15] C. Leitao, B.K. Zhang, R. Padmanabhan, D.M. Rodrigues, Influence of weld geometry and mismatch on formability of aluminium tailor welded blanks: numerical and experimental analysis, Sci. Technol. Weld. Join. 16 (2011) 662–668. https://doi.org/10.1179/1362171811Y.0000000055
[16] X. Qiu, The study on Numerical Simulation of Tailor Welded Blanks in Square Cup Stamping, Adv. Mater. Res. 189-193 (2011) 3932-3935. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3932
[17] O. Singar, D. Banabic, Numerical Simulation of Tailored Hybrid Blanks, Proceedings of Romanian Academy, Sereis A, Volume 22, Number2/2021, pp. 177-184.