Flange wrinkling in incremental shape rolling

Flange wrinkling in incremental shape rolling

ESSA Abdelrahman, ABEYRATHNA Buddhika, ROLFE Bernard, WEISS Matthias

download PDF

Abstract. Automotive structural components from Advanced High Strength Steels (AHSS) can be manufactured with Flexible Roll Forming (FRF). Flange wrinkling is a common shape defect in FRF, this restricts the application of FRF in the automotive industry. The new Incremental Shape Rolling process (ISR) showed that a high tensile transverse strain is developed in the flange and that assists the plastic deformation in the flange. Hence, wrinkle severity can be significantly reduced when weight-optimized components are formed. In this study, the ISR process is applied to a variable width profile from DP600. This investigated profile is a modified automotive component. The forming strains and wrinkling severity in ISR are compared with those obtained from the FRF case. The ISR and the FRF experimental trials are performed on a prototype FRF facility and then used to validate the numerical models which are applied to analyse the deformation behaviour in both processes. The ISR results show a significant reduction in wrinkling. This is due to the high tensile transverse strain that is developed in the ISR flange which facilitates the plastic deformation and hence the flange is stably compressed to the required shape.

Keywords
Incremental Shape Rolling, Flexible Roll Forming, Finite Element Analysis, Wrinkling

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: ESSA Abdelrahman, ABEYRATHNA Buddhika, ROLFE Bernard, WEISS Matthias, Flange wrinkling in incremental shape rolling, Materials Research Proceedings, Vol. 28, pp 1047-1056, 2023

DOI: https://doi.org/10.21741/9781644902479-115

The article was published as article 115 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] N. Baluch, Z.M. Udin, C.S. Abdullah, Advanced high strength steel in auto industry: an overview, Eng. Appl. Sci. Res. 4 (2014) 686-689. https://doi.org/10.48084/etasr.444
[2] G. Sun, M. Deng, G. Zheng, Q. Li, Design for cost performance of crashworthy structures made of high strength steel, Thin-Walled Struct. 138 (2019) 458-472. https://doi.org/10.1016/j.tws.2018.07.014
[3] A.D. Deole, M.R. Barnett, M. Weiss, The numerical prediction of ductile fracture of martensitic steel in roll forming, Int. J. Solids. Struct. 144-145 (2018) 20-31. https://doi.org/10.1016/j.ijsolstr.2018.04.011
[4] C. Jiao-Jiao, C. Jian-Guo, Z. Qiu-Fang, L. Jiang, Y. Ning, Z. Rong-guo, A novel approach to springback control of high-strength steel in cold roll forming, Int. J. Adv. Manuf. Technol. 107 (2020) 1793-1804. https://doi.org/10.1007/s00170-020-05154-8
[5] Y. Yan, H. Wang, Q. Li, B. Qian, K. Mpofu, Simulation and experimental verification of flexible roll forming of steel sheets, Int. J. Adv. Manuf. Technol. 72 (2014) 209-220. https://doi.org/10.1007/s00170-014-5667-0
[6] M.M. Kasaei, H.M. Naeini, G.H. Liaghat, C.M.A. Silva, M.B. Silva, P.A.F. Martins, Revisiting the wrinkling limits in flexible roll forming, J. Strain. Anal. Eng. Des. 50 (2015) 528-541. https://doi.org/10.1177/0309324715590956
[7] M.M. Kasaei, H.M. Naeini, B. Abbaszadeh, M. Mohammadi, M. Ghodsi, M. Kiuchi, R. Zolghadr, G. Liaghat, R.A. Tafti, M. S. Tehrani, Flange wrinkling in flexible roll forming Process, Procedia Eng. 81 (2014) 245-250. https://doi.org/10.1016/j.proeng.2014.09.158
[8] P. Groche, A. Zettler, S. Berner, G. Schneider, Development and verification of a one-step-model for the design of flexible roll formed parts, Int. J. Mater. Form. 4 (2010) 371-377. https://doi.org/10.1007/s12289-010-0998-3
[9] B. Abeyrathna, S. Ghanei, B. Rolfe, R. Taube, M. Weiss, Optimising part quality in the flexible roll forming of an automotive component, Int. J. Adv. Manuf. Technol. 118 (2021) 3361-3373. https://doi.org/10.1007/s00170-021-08176-y
[10] S. Ghanei, B. Abeyrathna, B. Rolfe, M. Weiss. Analysis of material behaviour and shape defect compensation in the flexible roll forming of advanced high strength steel. In: IOP Conf Ser Mater Sci Eng.vol. 651. IOP Conf Ser Mater Sci Eng; 2019. https://doi.org/10.1088/1757-899x/651/1/012064.
[11] S. Gatea, H. Ou, G. McCartney, Review on the influence of process parameters in incremental sheet forming, Int. J. Adv. Manuf. Technol. 87 (2016) 479-499. https://doi.org/10.1007/s00170-016-8426-6
[12] O. Music, J.M. Allwood, K. Kawai, A review of the mechanics of metal spinning, J. Mater. Process. Technol. 210 (2010) 3-23. https://doi.org/10.1016/j.jmatprotec.2009.08.021
[13] Z. Jia, L. Li, Z. R. Han, Z. J. Fan, B. M. Liu, Experimental study on wrinkle suppressing in multi-pass drawing spinning of 304 stainless steel cylinder, Int. J. Adv. Manuf. Technol. 100 (2018) 111-116. https://doi.org/10.1007/s00170-018-2712-4
[14] A.K. Behera, R.A. de Sousa, G. Ingarao, V. Oleksik, Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015, J. Manuf. Process. 27 (2017) 37-62. https://doi.org/10.1016/j.jmapro.2017.03.014
[15] A. Kumar, V. Gulati, P. Kumar, H. Singh, Forming force in incremental sheet forming: a comparative analysis of the state of the art, J. Braz. Soc. Mech. Sci. Eng. 41 (2019). https://doi.org/10.1007/s40430-019-1755-2
[16] A. Essa, B. Abeyrathna, B. Rolfe, M. Weiss, Prototyping of straight section components using incremental shape rolling, Int. J. Adv. Manuf. Tech. 121 (2022) 3883-3901. https://doi.org/10.1007/s00170-022-09600-7
[17] ASTM Standard, Standard Test Methods for Tension Testing of Metallic Materials, in, ASTM International, 2016.
[18] A. Sreenivas, B. Abeyrathna, B. Rolfe, M. Weiss, Longitudinal strain and wrinkling analysis of variable depth flexible roll forming, J. Manuf. Process. 81 (2022) 414-432. https://doi.org/10.1016/j.jmapro.2022.06.063
[19] Information on https://www.creaform3d.com/en;
[20] Information on http://www.geomagic.com/en/;
[21] Information on https://www.vialux.de/en/;
[22] M. Weiss, B. Abeyrathna, D.S. Gangoda, J. Mendiguren, H. Wolfkamp, Bending behaviour and oil canning in roll forming a steel channel, Int. J. Adv. Manuf. Technol. 91 (2017) 2875-2884. https://doi.org/10.1007/s00170-016-9892-6
[23] Y.Y. Woo, S.W. Han, I.Y. Oh, Y.H. Moon, Shape defects in the flexible roll forming of automotive parts, Int J Automot. Technol. 20 (2019) 227-236. https://doi.org/10.1007/s12239-019-0022-y
[24] B. Abeyrathna, B. Rolfe, L. Pan, R. Ge, M. Weiss, Flexible roll forming of an automotive component with variable depth, Adv. Mater. Process. Technol. 2 (2016) 527-538. https://doi.org/10.1080/2374068x.2016.1247234
[25] B. Abeyrathna, B. Rolfe, J. Harrasser, A. Sedlmaier, G. Rui, L. Pan, M. Weiss. Prototyping of automotive components with variable width and depth. In: 36th IDDRG Conference.vol. 36th IDDRG Conference; 2017. https://doi.org/10.1088/1742-6596/896/1/012092
[26] B. Abeyrathna, B. Rolfe, M. Weiss, The effect of process and geometric parameters on longitudinal edge strain and product defects in cold roll forming, Int. J. Adv. Manuf. Technol. 92 (2017) 743-754. https://doi.org/10.1007/s00170-017-0164-x