Electrically-assisted deep drawing of 5754 aluminium alloy sheet

Electrically-assisted deep drawing of 5754 aluminium alloy sheet

DOBRAS Daniel, ZIMNIAK Zbigniew, ZWIERZCHOWSKI Maciej

download PDF

Abstract. The effect of current pulse application on the mechanical behaviour and plasticity of the 5754 aluminium alloy was studied. Tensile and deep drawing tests were conducted. The 5754 aluminium alloy in two different states of hardening was used: H111 and H22. The results show that the application of current pulses can significantly increase the plasticity of the examined alloys in the case of the tensile test. The dynamic recovery process is the main process responsible for the increase in plasticity of the material. However, in the case of the deep drawing process, it was observed that the increase in the material formability is low, and further studies are needed.

Keywords
Electrically-Assisted Forming, Aluminium Alloys, Deep Drawing

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: DOBRAS Daniel, ZIMNIAK Zbigniew, ZWIERZCHOWSKI Maciej, Electrically-assisted deep drawing of 5754 aluminium alloy sheet, Materials Research Proceedings, Vol. 28, pp 997-1006, 2023

DOI: https://doi.org/10.21741/9781644902479-109

The article was published as article 109 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Z. Gronostajski, K. Jaśkiewicz, P. Kaczyński, M. Skwarski, S. Polak, J. Krawczyk, W. Chorzępa, P. Trzpis, W-Temper forming of B-pillar from 7075 aluminum alloy, CIRP Ann. 71 (2022) 221–224. https://doi.org/10.1016/j.cirp.2022.03.019
[2] H. Deng, Y. Mao, G. Li, X. Zhang, J. Cui, AA5052 failure prediction of electromagnetic flanging process using a combined fracture model, Arch. Civ. Mech. Eng. 22 (2022) 1-17. https://doi.org/10.1007/s43452-022-00390-z
[3] S. Toros, F. Ozturk, I. Kacar, Review of warm forming of aluminum-magnesium alloys, J. Mater. Process. Technol. 207 (2008) 1–12. https://doi.org/10.1016/j.jmatprotec.2008.03.057
[4] W.A. Salandro, J.T. Roth, Formation of 5052 aluminum channels using Electrically-Assisted Manufacturing (EAM), Proc. ASME Int. Manuf. Sci. Eng. Conf. 2009, MSEC2009. 2 (2009) 599-608. https://doi.org/10.1115/MSEC2009-84117
[5] H.R. Dong, X.Q. Li, Y. Li, Y.H. Wang, H.B. Wang, X.Y. Peng, D.S. Li, A review of electrically assisted heat treatment and forming of aluminum alloy sheet, Int. J. Adv. Manuf. Technol. 120 (2022) 7079–7099. https://doi.org/10.1007/s00170-022-08996-6
[6] E. Simonetto, S. Bruschi, A. Ghiotti, Electroplastic effect on AA1050 plastic flow behavior in H24 tempered and fully annealed conditions, Procedia Manuf. 34 (2019) 83-89. https://doi.org/10.1016/j.promfg.2019.06.124
[7] B.J. Ruszkiewicz, T. Grimm, I. Ragai, L. Mears, J.T. Roth, A Review of Electrically-Assisted Manufacturing with Emphasis on Modeling and Understanding of the Electroplastic Effect, J. Manuf. Sci. Eng. Trans. ASME. 139 (2017) 1–15. https://doi.org/10.1115/1.4036716
[8] J.H. Roh, J.J. Seo, S.T. Hong, M.J. Kim, H.N. Han, J.T. Roth, The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current, Int. J. Plast. 58 (2014) 84-99. https://doi.org/10.1016/j.ijplas.2014.02.002
[9] H.J. Jeong, M.J. Kim, J.W. Park, C.D. Yim, J.J. Kim, O.D. Kwon, P.P. Madakashira, H.N. Han, Effect of pulsed electric current on dissolution of Mg17Al12 phases in as-extruded AZ91 magnesium alloy, Mater. Sci. Eng. A. 684 (2017) 668-676. https://doi.org/10.1016/j.msea.2016.12.103
[10] N.K. Dimitrov, Y. Liu, M.F. Horstemeyer, Electroplasticity: A review of mechanisms in electro-mechanical coupling of ductile metals, Mech. Adv. Mater. Struct. 0 (2020) 1-12. https://doi.org/10.1080/15376494.2020.1789925
[11] K. Okazaki, M. Kagawa, H. Conrad, A study of the electroplastic effect in metals, Scr. Metall. 12 (1978) 1063-1068. https://doi.org/10.1016/0036-9748(78)90026-1
[12] M.I. Molotskii, Theoretical basis for electro- and magnetoplasticity, Mater. Sci. Eng. A. 287 (2000) 248-258. https://doi.org/10.1016/s0921-5093(00)00782-6
[13] B.J. Ruszkiewicz, L. Mears, J.T. Roth, Investigation of Heterogeneous Joule Heating as the Explanation for the Transient Electroplastic Stress Drop in Pulsed Tension of 7075-T6 Aluminum, J. Manuf. Sci. Eng. Trans. ASME. 140 (2018) 1–11. https://doi.org/10.1115/1.4040349
[14] J. Zhao, G.X. Wang, Y. Dong, C. Ye, Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing, J. Appl. Phys. 122 (2017). https://doi.org/10.1063/1.4998938
[15] R. Fan, J. Magargee, P. Hu, J. Cao, Influence of grain size and grain boundaries on the thermal and mechanical behavior of 70/30 brass under electrically-assisted deformation, Mater. Sci. Eng. A. 574 (2013) 218–225. https://doi.org/10.1016/j.msea.2013.02.066
[16] M.J. Kim, S. Yoon, S. Park, H.J. Jeong, J.W. Park, K. Kim, J. Jo, T. Heo, S.T. Hong, S.H. Cho, Y.K. Kwon, I.S. Choi, M. Kim, H.N. Han, Elucidating the origin of electroplasticity in metallic materials, Appl. Mater. Today. 21 (2020) 100874. https://doi.org/10.1016/j.apmt.2020.100874
[17] S. Zhao, R. Zhang, Y. Chong, X. Li, A. Abu-Odeh, E. Rothchild, D.C. Chrzan, M. Asta, J.W. Morris, A.M. Minor, Defect reconfiguration in a Ti–Al alloy via electroplasticity, Nat. Mater. 20 (2021) 468-472. https://doi.org/10.1038/s41563-020-00817-z
[18] X. Li, J. Turner, K. Bustillo, A.M. Minor, In situ transmission electron microscopy investigation of electroplasticity in single crystal nickel, Acta Mater. 223 (2022) 117461. https://doi.org/10.1016/j.actamat.2021.117461
[19] X. Zhang, H. Li, M. Zhan, Z. Zheng, J. Gao, G. Shao, Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations, J. Mater. Sci. Technol. 36 (2020) 79-83. https://doi.org/10.1016/j.jmst.2019.08.008
[20] Z. Zimniak, G. Radkiewicz, The electroplastic effect in the cold-drawing of copper wires for the automotive industry, Arch. Civ. Mech. Eng. 8 (2008) 173–179. https://doi.org/10.1016/S1644-9665(12)60204-0
[21] G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, Q. Li, Experimental study of electroplastic effect on stainless steel wire 304L, Mater. Sci. Eng. A. 281 (2000) 263-267. https://doi.org/10.1016/s0921-5093(99)00708-x
[22] Z. Xu, G. Tang, S. Tian, F. Ding, H. Tian, Research of electroplastic rolling of AZ31 Mg alloy strip, J. Mater. Process. Technol. 182 (2007) 128-133. https://doi.org/10.1016/j.jmatprotec.2006.07.019
[23] H.D. Nguyen-Tran, H.S. Oh, S.T. Hong, H.N. Han, J. Cao, S.H. Ahn, D.M. Chun, A review of electrically-assisted manufacturing, Int. J. Precis. Eng. Manuf. – Green Technol. 2 (2015) 365-376. https://doi.org/10.1007/s40684-015-0045-4
[24] H. Xie, X. Dong, Z. Ai, Q. Wang, F. Peng, K. Liu, F. Chen, J. Wang, Experimental investigation on electrically assisted cylindrical deep drawing of AZ31B magnesium alloy sheet, Int. J. Adv. Manuf. Technol. 86 (2016) 1063–1069. https://doi.org/10.1007/s00170-015-8246-0
[25] Z. Lv, Y. Zhou, L. Zhan, Z. Zang, B. Zhou, S. Qin, Electrically assisted deep drawing on high-strength steel sheet, Int. J. Adv. Manuf. Technol. 112 (2021) 763-773. https://doi.org/10.1007/s00170-020-06335-1
[26] G.F. Wang, B. Wang, S.S. Jang, K.F. Zhang, Pulse current auxiliary thermal deep drawing of SiCp/2024Al composite sheet with poor formability, J. Mater. Eng. Perform. 21 (2012) 2062-2066. https://doi.org/10.1007/s11665-012-0165-8
[27] H.G. Park, B.S. Kang, J. Kim, Numerical modeling and experimental verification for high-speed forming of Al5052 with single current pulse, Metals 9 (2019). https://doi.org/10.3390/met9121311
[28] Y. Zhao, L. Peng, X. Lai, Influence of the electric pulse on springback during stretch U-bending of Ti6Al4V titanium alloy sheets, J. Mater. Process. Technol. 261 (2018) 12–23. https://doi.org/10.1016/j.jmatprotec.2018.05.030
[29] G. Lesiuk, Z. Zimniak, W. Wiśniewski, J.A.F.O. Correia, Fatigue lifetime improvement in AISI 304 stainless steel due to high-density electropulsing, Procedia Struct. Integr. 5 (2017) 928–934. https://doi.org/10.1016/j.prostr.2017.07.118
[30] M.H. Alvi, S. Cheong, H. Weiland, A.D. Rollett, Recrystallization and texture development in hot rolled 1050 aluminum, Mater. Sci. Forum. 467–470 (2004) 357–362. https://doi.org/10.4028/www.scientific.net/msf.467-470.357