Line element-less method (LEM) for arbitrarily shaped nonlocal nanoplates: exact and approximate analytical solutions

Line element-less method (LEM) for arbitrarily shaped nonlocal nanoplates: exact and approximate analytical solutions

Alberto DI MATTEO, Antonina PIRROTTA

download PDF

Abstract. This paper presents an innovative procedure for the analysis of nonlocal plates with arbitrary shape and various boundary conditions. In this regard, the Eringen’s nonlocal model is used to capture small length scale effects. The proposed procedure, referred to as Line Element-Less Method (LEM), is a completely meshfree approach requiring the evaluations of simple line integrals along the plate boundary parametric equation. Further, the deflection function is represented by a series expansion is terms of harmonic polynomials whose coefficients are found by performing variations of appropriately introduced functionals, leading to a linear system of algebraic. Notably, the proposed procedure yields approximate analytical solutions for general shapes and boundary conditions, and even exact solutions for some plate geometries.

Keywords
Kirchoff Plate, Nonlocal Eringen Model, Harmonic Polynomials, Line Element-Less Method, Meshfree Method

Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Alberto DI MATTEO, Antonina PIRROTTA, Line element-less method (LEM) for arbitrarily shaped nonlocal nanoplates: exact and approximate analytical solutions, Materials Research Proceedings, Vol. 26, pp 613-618, 2023

DOI: https://doi.org/10.21741/9781644902431-99

The article was published as article 99 of the book Theoretical and Applied Mechanics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2 (1964)189-203. https://doi.org/10.1016/0020-7225(64)90004-7
[2] M. Di Paola, A. Pirrotta, M. Zingales, Mechanically-based approach to non-local elasticity: variational principles. Int. J. Solids Struct. 47 (2010) 539–548. https://doi.org/10.1016/j.ijsolstr.2009.09.029
[3] M. Di Paola, G. Failla, A. Pirrotta, A. Sofi, M. Zingales. The mechanically based non-local elasticity: an overview of main results and future challenges. Phil. Trans. R. Soc. A. (2013) 37120120433. https://doi.org/10.1098/rsta.2012.0433
[4] F.P. Pinnola, S.A. Faghidian, R. Barretta, F. Marotti de Sciarra. Variationally consistent dynamics of nonlocal gradient elastic beams. Int. J. Eng. Sci. 149 (2020) 103220. https://doi.org/10.1016/j.ijengsci.2020.103220
[5] A.C. Eringen, D.G.B. Edelen. On nonlocal elasticity. Int. J. Eng. Sci. 10 (1972) 233–248. https://doi.org/10.1016/0020-7225(72)90039-0
[6] A.C. Eringen. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10 (1972) 425–435. https://doi.org/10.1016/0020-7225(72)90050-X
[7] J. Peddieson, G.R. Buchanan, R.P. McNitt. Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41 (2003) 305–312. https://doi.org/10.1016/S0020-7225(02)00210-0
[8] R. Barretta, L. Feo, R. Luciano, F. Marotti de Sciarra. Application of an enhanced version of the Eringen differential model to nanotechnology. Compos. B Eng. 96 (2016) 274–280. https://doi.org/10.1016/j.compositesb.2016.04.023
[9] J.N. Reddy. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci. 48 (2010) 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
[10] P. Lu, P.Q. Zhang, H.P. Lee, C.M. Wang, J.N. Reddy. Nonlocal elastic plate theories. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 463 (2007) 3225-3240. https://doi.org/10.1098/rspa.2007.1903
[11] R. Ansari, J. Torabi, A. Norouzzadeh. Bending analysis of embedded nanoplates based on the integral formulation of Eringen’s nonlocal theory using the finite element method, Physica B. 534 (2018) 90-97. https://doi.org/10.1016/j.physb.2018.01.025
[12] T. Aksencer, M. Aydogdu. Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Physica E. 43 (2011) 954–959. https://doi.org/10.1016/j.physe.2010.11.024
[13] H. Irschik, R. Heuer. Analogies of simply supported nonlocal Kirchhoff plates of polygonal planform. Acta Mech. 229 (2018) 867-879. https://doi.org/10.1007/s00707-017-2005-2
[14] J.W. Yan, L.H. Tong, C. Li, Y. Zhu, Z.W. Wang. Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory. Compos. Struct. 25 (2015) 304-313. https://doi.org/10.1016/j.compstruct.2015.02.017
[15] W.H. Duan, C.M. Wang. Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology. 18 (2007) 385704. https://doi.org/10.1088/0957-4484/18/38/385704
[16] G. Battaglia, A. Di Matteo, G. Micale, A. Pirrotta. Arbitrarily shaped plates analysis via Line Element-Less Method (LEM). Thin-Walled Struct. 133 (2018) 235-248. https://doi.org/10.1016/j.tws.2018.09.018
[17] G. Battaglia, A. Di Matteo, G. Micale, A. Pirrotta. Vibration-based identification of mechanical properties of orthotropic arbitrarily shaped plates: Numerical and experimental assessment. Compos. Pt. B-Eng. 150 (2018) 212-225. https://doi.org/10.1016/j.compositesb.2018.05.029
[18] A. Pirrotta, C. Bucher. Innovative straight formulation for plate in bending, Comput. Struct. 180 (2017) 117-124. https://doi.org/10.1016/j.compstruc.2016.01.004
[19] A. Pirrotta, C. Proppe. Extension of the line element-less method to dynamic problems. Meccanica. 55 (2020) 745–750. https://doi.org/10.1007/s11012-019-01120-1
[20] M. Di Paola, A. Pirrotta, R. Santoro. Line Element-less Method (LEM) for beam torsion solution (Truly no-mesh method). Acta Mech. 195 (2008) 349-63. https://doi.org/10.1007/s00707-007-0557-2
[21] M. Di Paola, A. Pirrotta, R. Santoro. De Saint-Venant flexure-torsion problem handled by Line Element-less Method (LEM). Acta Mech. 217 (2011) 101-118. https://doi.org/10.1007/s00707-010-0376-8
[22] A. Pirrotta. LEM for twisted re-entrant angle sections. Comput Struct. 133 (2014) 149-155. https://doi.org/10.1016/j.compstruc.2013.11.015
[23] G. Barone, A. Pirrotta, R. Santoro. Comparison among three boundary element methods for torsion problems: CPM, CVBEM, LEM. Eng. Anal. Bound. Elem. 35 (2011) 895–907. https://doi.org/10.1016/j.enganabound.2011.02.003
[24] R. Santoro. Solution of de Saint Venant flexure-torsion problem for orthotropic beam via LEM (Line Element-less Method). Eur J Mech A-Solids. 30 (2011) 924-939. https://doi.org/10.1016/j.euromechsol.2011.06.003
[25] A. Di Matteo, M. Pavone, A. Pirrotta. Exact and approximate analytical solutions for nonlocal nanoplates of arbitrary shapes in bending using the line element-less method. Meccanica. 57 (2022) 923-941. https://doi.org/10.1007/s11012-021-01368-6
[26] E. Murtha-Smith. Plate analogy for the torsion problem. J Eng Mech. 116 (1990) 1-17. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:1(1)
[27] H. Irschik. Analogies between bending of plates and torsion problem. J Eng Mech. 117 (1991) 2503-2508. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2503)