Multiscale failure analysis of fiber-reinforced composite structures via a hybrid cohesive/volumetric nonlinear homogenization strategy

Multiscale failure analysis of fiber-reinforced composite structures via a hybrid cohesive/volumetric nonlinear homogenization strategy

Daniele Gaetano, Fabrizio Greco, Lorenzo Leonetti, Paolo Nevone Blasi, Arturo Pascuzzo

download PDF

Abstract. In this work, a novel multiscale model for softening periodic microstructures is proposed, relying on a nonlinear homogenization method combined with a cohesive/volumetric finite element model. This strategy is able to overcome the mesh sensitivity issues usually experienced by purely volumetric homogenization techniques in presence of strain localization. As the main ingredient of the proposed approach, a microscopically informed traction-separation law for the embedded interfaces is extracted, starting from the homogenized bulk behavior obtained for a suitably chosen Repeating Unit Cell (RUC) subjected to different macro-strain paths. The present approach has been fully validated by performing several numerical simulations of the main damage phenomena experienced by fiber-reinforced composite structures, with special reference to transverse micro-cracking. Finally, to investigate the reliability and the accuracy of the proposed model, a comparison with direct simulations performed on fully meshed specimens has been presented, in terms of both load-displacement curves and associated crack patterns.

Keywords
Cohesive/Volumetric Multiscale Modeling, Failure Analysis, Fiber-Reinforced Composite Structures

Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Daniele Gaetano, Fabrizio Greco, Lorenzo Leonetti, Paolo Nevone Blasi, Arturo Pascuzzo, Multiscale failure analysis of fiber-reinforced composite structures via a hybrid cohesive/volumetric nonlinear homogenization strategy, Materials Research Proceedings, Vol. 26, pp 607-612, 2023

DOI: https://doi.org/10.21741/9781644902431-98

The article was published as article 98 of the book Theoretical and Applied Mechanics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] F. Greco, P. Lonetti, R. Zinno, An analytical delamination model for laminated plates including bridging effects, Int. J. Solids Struct. 39(9) (2002) 2435-2463. https://doi.org/10.1016/S0020-7683(02)00118-X
[2] M. Pepe, M. Pingaro, P. Trovalusci, E. Reccia, L. Leonetti, Micromodels for the in-plane failure analysis of masonry walls: Limit analysis, FEM and FEM/DEM approaches, Frat. ed Integrita Strutt. 14(51) (2020) 504-516. https://doi.org/10.3221/IGF-ESIS.51.38
[3] T. Belytschko, J.-H. Song, Coarse-graining of multiscale crack propagation, Int. J. Numer. Meth. Engng. 81 (2010) 537-563. https://doi.org/10.1002/nme.2694
[4] F. Greco, L. Leonetti, R. Luciano, A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete, Constr. Build. Mater. 95 (2015) 860-874. https://doi.org/10.1016/j.conbuildmat.2015.07.170
[5] F. Greco, L. Leonetti, R. Luciano, P. Nevone Blasi, An adaptive multiscale strategy for the damage analysis of masonry modeled as a composite material, Compos. Struct. 153 (2016) 972-988. https://doi.org/10.1016/j.compstruct.2016.06.066
[6] F. Greco, L. Leonetti, U. De Maio, S. Rudykh, A. Pranno, Macro- and micro-instabilities in incompressible bioinspired composite materials with nacre-like microstructure, Compos. Struct. 269 (2021) 114004. https://doi.org/10.1016/j.compstruct.2021.114004
[7] A. Pranno, F. Greco, L. Leonetti, P. Lonetti, R. Luciano, U. De Maio, Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials, Compos. Struct. 282 (2022) 115032. https://doi.org/10.1016/j.compstruct.2021.115032
[8] V.G. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput. Methods Appl. Mech. Eng. 193(48-51) (2004) 5525-5550. https://doi.org/10.1016/j.cma.2003.12.073
[9] I.M. Gitman, H. Askes, L.J. Sluys, Coupled-volume multi-scale modelling of quasi-brittle material, Eur. J. Mech. A Solids. 27(3) (2008) 302-327. https://doi.org/10.1016/j.euromechsol.2007.10.004
[10] P. Trovalusci, M.L. De Bellis, M. Ostoja-Starzewski, A. Murrali, Particulate random composites homogenized as micropolar materials, Meccanica 49 (2014) 2719-2727. https://doi.org/10.1007/s11012-014-0031-x
[11] M. Tuna, L. Leonetti, P. Trovalusci, M. Kirca, ‘Explicit’ and ‘implicit’ non-local continuous descriptions for a plate with circular inclusion in tension, Meccanica 55(4) (2020) 927-944. https://doi.org/10.1007/s11012-019-01091-3
[12] T.J. Massart, R.H.J. Peerlings, M.G.D. Geers, An enhanced multi-scale approach for masonry wall computations with localization of damage, Int. J. Numer. Methods Eng. 69(5) (2007) 1022-1059. https://doi.org/10.1002/nme.1799
[13] T. Belytschko, S. Loehnert, J.-H. Song, Multiscale aggregating discontinuities: A method for circumventing loss of material stability, Int. J. Numer. Methods Eng. 73(6) (2008) 869-894. https://doi.org/10.1002/nme.2156
[14] V.P. Nhuyen, O. Lloberas-Valls, M. Stroeven, L.J. Sluys, On the existence of representative volumes for softening quasi-brittle materials – A failure zone averaging scheme, Comput. Methods Appl. Mech. Eng. 199(45-48) (2010) 3028-3038. https://doi.org/10.1016/j.cma.2010.06.018
[15] C.V. Verhoosel, J.J.C. Remmers, M.A. Gutiérrez, R. de Borst, Computational homogenization for adhesive and cohesive failure in quasi-brittle solids, Int. J. Numer. Methods Eng. 83(8-9) (2010) 1155-1179. https://doi.org/10.1002/nme.2854
[16] V.P. Nhuyen, O. Lloberas-Valls, M. Stroeven, L.J. Sluys, Homogenization-based multiscale crack modelling: From micro-diffusive damage to macro-cracks, Comput. Methods Appl. Mech. Eng. 200(9-12) (2011) 1220-1236. https://doi.org/10.1016/j.cma.2010.10.013
[17] F. Feyel, A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Eng. 192(28-30) (2003) 3233-3244. https://doi.org/10.1016/S0045-7825(03)00348-7
[18] U. De Maio, D. Cendón, F. Greco, L. Leonetti, P. Nevone Blasi, J. Planas, Investigation of concrete cracking phenomena by using cohesive fracture-based techniques: A comparison between an embedded crack model and a refined diffuse interface model, Theor. Appl. Fract. Mech. 115 (2021) 103062. https://doi.org/10.1016/j.tafmec.2021.103062
[19] F. Greco, D. Gaetano, L. Leonetti, P. Lonetti, A. Pascuzzo, A. Skrame, Structural and seismic vulnerability assessment of the Santa Maria Assunta Cathedral in Catanzaro (Italy): classical and advanced approaches for the analysis of local and global failure mechanisms, Frat. ed Integrita Strutt. 16(60) (2022) 464-487. https://doi.org/10.3221/IGF-ESIS.60.32
[20] A. Pranno, F. Greco, P. Lonetti, R. Luciano, U. De Maio, An improved fracture approach to investigate the degradation of vibration characteristics for reinforced concrete beams under progressive damage, Int. J. Fatigue 163 (2022) 107032. https://doi.org/10.1016/j.ijfatigue.2022.107032
[21] U. De Maio, F. Greco, L. Leonetti, P. Nevone Blasi, A. Pranno, A cohesive fracture model for predicting crack spacing and crack width in reinforced concrete structures, Eng. Fail. Anal. 139 (2022) 106452. https://doi.org/10.1016/j.engfailanal.2022.106452
[22] U. De Maio, F. Greco, L. Leonetti, P. Nevone Blasi, A. Pranno, An investigation about debonding mechanisms in FRP-strengthened RC structural elements by using a cohesive/volumetric modeling technique, Theor. Appl. Fract. Mech. 117 (2022) 103199. https://doi.org/10.1016/j.tafmec.2021.103199
[23] A. Pascuzzo, F. Greco, L. Leonetti, P. Lonetti, A. Pranno, C. Ronchei, Investigation of mesh dependency issues in the simulation of crack propagation in quasi-brittle materials by using a diffuse interface modeling approach, Fatigue Fract. Eng. Mater. Struct. 45(3) (2022) 801-820. https://doi.org/10.1111/ffe.13635
[24] L.P. Canal, C. González, J. Segurado, J. LLorca, Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling. Compos. Sci. Technol. 72(11) (2012) 1223-1232. https://doi.org/10.1016/j.compscitech.2012.04.008
[25] A. Pascuzzo, A. Yudhanto, M. Alfano, G. Lubineau, On the effect of interfacial patterns on energy dissipation in plastically deforming adhesive bonded ductile sheets, Int. J. Solids Struct. 198 (2020) 31-40. https://doi.org/10.1016/j.ijsolstr.2020.04.001
[26] D. Ammendolea, F. Greco, P. Lonetti, R. Luciano, A. Pascuzzo, Crack propagation modeling in functionally graded materials using Moving Mesh technique and interaction integral approach, Compos. Struct. 269 (2021) 114005. https://doi.org/10.1016/j.compstruct.2021.114005
[27] F. Greco, D. Ammendolea, P. Lonetti, A. Pascuzzo, Crack propagation under thermo-mechanical loadings based on moving mesh strategy, Theor. Appl. Fract. Mech. 114 (2021) 113033. https://doi.org/10.1016/j.tafmec.2021.103033
[28] A. Pascuzzo, F. Greco, P. Lonetti, D. Ammendolea, Dynamic fracture analysis in quasi-brittle materials via a finite element approach based on the combination of the ALE formulation and M-integral method, Eng. Fail. Anal. (2022) 106627. https://doi.org/10.1016/j.engfailanal.2022.106627