Multiscale approach to decohesion in cell-matrix systems

Multiscale approach to decohesion in cell-matrix systems

Salvatore Di Stefano, Ariel Ramirez-Torres, Luca Bellino, Vincenzo Fazio, Gennaro Vitucci, Giuseppe Florio

download PDF

Abstract. We propose a model for cell-matrix decohesion that highlights the role of elasticity in this process. In doing this, we specialize our previous study of focal adhesion, an integrin mediated structure that oversees and guides the mutual interactions between cells and the extracellular matrix. Specifically, we consider a two-scale asymptotic homogenization technique to study the multi-scale nature of decohesion. Thus, we are able to use micro-structural information available at length scales smaller than those at which focal adhesions are observed. Based on classical two-scale asymptotic techniques the proposed approach allows to define effective elastic coefficients encoding the intrinsic heterogeneous properties of both focal adhesions and extracellular matrix.

Keywords
Focal Adhesion, Decohesion, Two-Scale Asymptotic Homogenization

Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Salvatore Di Stefano, Ariel Ramirez-Torres, Luca Bellino, Vincenzo Fazio, Gennaro Vitucci, Giuseppe Florio, Multiscale approach to decohesion in cell-matrix systems, Materials Research Proceedings, Vol. 26, pp 47-52, 2023

DOI: https://doi.org/10.21741/9781644902431-8

The article was published as article 8 of the book Theoretical and Applied Mechanics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] B.N.J Persson, On the mechanism of adhesion in biological systems. The Journal of chemical physics 118.16 (2003): 7614-7621. https://doi.org/10.1063/1.1562192
[2] A. Nicolas, B. Geiger, S.A. Safran. Cell mechanosensitivity controls the anisotropy of focal adhesions. PNAS 101.34 (2004): 12520-12525. https://doi.org/10.1073/pnas.0403539101
[3] X. Cao, et al. A chemomechanical model of matrix and nuclear rigidity regulation of focal adhesion size. Biophysical Journal 109.9 (2015): 1807-1817. https://doi.org/10.1016/j.bpj.2015.08.048
[4] X. Cao, et al. Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences 114.23 (2017): E4549-E4555. https://doi.org/10.1073/pnas.1620486114
[5] S. Di Stefano, et al. On the role of elasticity in focal adhesion stability within the passive regime. Int. J. Non Linear Mech. 10.1016/j.ijnonlinmec.2022.104157 (2022). https://doi.org/10.1016/j.ijnonlinmec.2022.104157
[6] S. Di Stefano, E. Benvenuti, V. Coscia. On the role of friction and remodelling in cell-matrix interactions: A continuum mechanical model. Int. J. Non Linear Mech.142 (2022): 103966. https://doi.org/10.1016/j.ijnonlinmec.2022.103966
[7] A. Besser, U. S. Schwarz. Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction. New Journal of Physics 9.11 (2007): 425. https://doi.org/10.1088/1367-2630/9/11/425
[8] G. Rh Owen, et al. Focal adhesion quantification: A new assay of material biocompatibility? Review. European cells & materials 9 (2005): 85-96. https://doi.org/10.22203/eCM.v009a10
[9] M. Ben Amar, O.V. Manyuhina, and G. Napoli. Cell motility: a viscous fingering analysis of active gels. The European Physical Journal Plus 126.2 (2011): 1-15. https://doi.org/10.1140/epjp/i2011-11019-7
[10] L. Chun-Min, et al. Cell movement is guided by the rigidity of the substrate. Biophysical journal 79.1 (2000): 144-152. https://doi.org/10.1016/S0006-3495(00)76279-5
[11] D.E. Discher, P. Janmey, Y. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310.5751 (2005): 1139-1143. https://doi.org/10.1126/science.1116995
[12] L. Bellino, et al. On the competition between interface energy and temperature in phase transition phenomena, Application of Engineering Science, 2, 100009, (2020). https://doi.org/10.1016/j.apples.2020.100009
[13] A. Grillo, et al. A study of growth and remodeling in isotropic tissues, based on the Anand‐Aslan‐Chester theory of strain‐gradient plasticity. GAMM‐Mitteilungen 42.4 (2019): e201900015. https://doi.org/10.1002/gamm.201900015
[14] C. Giverso, et al. A three dimensional model of multicellular aggregate compression. Soft Matter 15.48 (2019): 10005-10019. https://doi.org/10.1039/C9SM01628G
[15] N.S. Bakhvalov, G. Panasenko. Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials. Vol. 36. Springer Science & Business Media, 2012.
[16] S. Di Stefano, et al. Effective balance equations for electrostrictive composites. Zeitschrift für angewandte Mathematik und Physik 71.5 (2020): 1-36. https://doi.org/10.1007/s00033-020-01365-x
[17] A. Ramírez-Torres, et al. The role of malignant tissue on the thermal distribution of cancerous breast. Journal of Theoretical Biology 426 (2017): 152-161. https://doi.org/10.1016/j.jtbi.2017.05.031
[18] A. Ramírez-Torres, et al. An asymptotic homogenization approach to the microstructural evolution of heterogeneous media. Int. J. Non Linear Mech.106 (2018): 245-257. https://doi.org/10.1016/j.ijnonlinmec.2018.06.012
[19] C. Frantz, K.M. Stewart, V.M. Weaver. The extracellular matrix at a glance. Journal of cell science 123.24 (2010): 4195-4200. https://doi.org/10.1242/jcs.023820
[20] A. Gladkikh, et al. Heterogeneity of focal adhesions and focal contacts in motile fibroblasts. Cellular Heterogeneity. Humana Press, New York, NY, 2018. 205-218. https://doi.org/10.1007/978-1-4939-7680-5_12
[21] S. Diebels, A. Geringer. Modelling inhomogeneous mechanical properties in adhesive bonds. The Journal of Adhesion 88.11-12 (2012): 924-940. https://doi.org/10.1080/00218464.2012.725612
[22] A. Shuaib, et al. Heterogeneity in the mechanical properties of integrins determines mechanotransduction dynamics in bone osteoblasts. Scientific reports 9.1 (2019): 1-14. https://doi.org/10.1038/s41598-019-47958-z
[23] J.J. Marigo, L. Truskinovsky. Initiation and propagation of fracture in the models of Griffith and Barenblatt. Continuum Mechanics and Thermodynamics 16.4 (2004): 391-409. https://doi.org/10.1007/s00161-003-0164-y
[24] N.M. Pugno, Nicola M., et al. A generalization of the Coulomb’s friction law: from graphene to macroscale. Meccanica 48.8 (2013): 1845-1851. https://doi.org/10.1007/s11012-013-9789-5
[25] V. Fazio, D. De Tommasi, N. M. Pugno, G. Puglisi, Spider Silks Mechanics: Predicting Humidity and Temperature Effects. JMPS, in print, (2022). https://doi.org/10.1016/j.jmps.2022.104857
[26] Di Stefano et al. A multiscale study of decohesion occurring in integrin-mediated biological systems. Preprint 2022
[27] M.J. Paszek, et al. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS computational biology 5.12 (2009): e1000604. https://doi.org/10.1371/journal.pcbi.1000604
[28] K.E. Caputo, D.A. Hammer. Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations. Biophysical journal 89.1 (2005): 187-200. https://doi.org/10.1529/biophysj.104.054171