Some remarks on the evaluation of work and dissipated energy associated with rate-independent hysteretic forces

Some remarks on the evaluation of work and dissipated energy associated with rate-independent hysteretic forces

Raffaele Capuano, Nicolò Vaiana, Luciano Rosati

download PDF

Abstract. We provide closed-form expressions to compute the path-dependent work performed by generalized rate-independent hysteretic forces, simulated by using a brand-new model denominated Vaiana-Rosati Model (VRM). In particular, such expressions are valid over a generic generalized displacement interval. Furthermore, we provide a closed-form expression for evaluating the dissipated energy associated with the work done by a rate-independent hysteretic force when a full cycle of periodic generalized displacement is applied.

Keywords
Path-Dependent Work, Dissipated Energy, Vaiana-Rosati Model

Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Raffaele Capuano, Nicolò Vaiana, Luciano Rosati, Some remarks on the evaluation of work and dissipated energy associated with rate-independent hysteretic forces, Materials Research Proceedings, Vol. 26, pp 369-374, 2023

DOI: https://doi.org/10.21741/9781644902431-60

The article was published as article 60 of the book Theoretical and Applied Mechanics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] D. Pellecchia, S. Lo Feudo, N. Vaiana, JL. Dion, and L. Rosati, A procedure to model and design elastomeric-based isolation systems for the seismic protection of rocking art objects, Comput. Aided. Civ. Inf, (2021) 1– 18. https://doi.org/10.1111/mice.12775
[2] N. Vaiana, F. Marmo, S. Sessa, and L. Rosati, Modeling of the hysteretic behavior of wire rope isolators using a novel rate-independent model, Nonlinear Dyn. (2020) 309–317. https://doi.org/10.1007/978-3-030-34713-0_31
[3] N. Vaiana, R. Capuano, S. Sessa, F. Marmo, and L. Rosati, Nonlinear dynamic analysis of seismically base-isolated structures by a novel OpenSees hysteretic material model, Applied Sciences 11.3 (2021) 900. https://doi.org/10.3390/app11030900
[4] D. Losanno, D. De Domenico, and IE. Madera-Sierra, Experimental testing of full-scale fiber reinforced elastomeric isolators (FREIs) in unbounded configuration, Eng. Struct. 260 (2022) 114234. https://doi.org/10.1016/j.engstruct.2022.114234
[5] I. Nuzzo, D. Losanno, F. Cilento, and N. Caterino Analytical and numerical modelling of shear-link device for seismic energy dissipation in frame structures, Eng. Struct. 214 (2020) 110630. https://doi.org/10.1016/j.engstruct.2020.110630
[6] R. Bouc, Model mathematique d’hysteresis, Acustica 24(1) (1971) 16-25.
[7] Y. Wen, Method for random vibration of hysteretic systems, J. Eng. Mech. Div. ASCE 102(2) (1976) 249-263. https://doi.org/10.1061/JMCEA3.0002106
[8] T. Baber, M. Noori, Modeling general hysteresis behavior and random vibration application, J. Vib. Acoust. Stress Reliab. Des. ASME 108(4) (1986) 411-420. https://doi.org/10.1115/1.3269364
[9] N. Vaiana, S. Sessa, F. Marmo, and L. Rosati, A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials, Nonlinear Dyn. 93.3 (2018) 1647–1669. https://doi.org/10.1007/s11071-018-4282-2
[10] J. Song, and A. Der Kiureghian, Generalized Bouc-Wen model for highly asymmetric hysteresis, J. Eng. Mech. 132.6 (2006) 610–618. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:6(610)
[11] N. Vaiana, S. Sessa, and L. Rosati, A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena, Mech. Syst. Sig. Process. 146 (2021) 106984. https://doi.org/10.1016/j.ymssp.2020.106984
[12] N. Vaiana, and L. Rosati, Classification and modeling of uniaxial rate-independent hysteresis phenomena: some preliminary results, AIMETA (2022).
[13] N. Vaiana, S. Sessa, M. Paradiso, F. Marmo, and L. Rosati, An efficient computational strategy for nonlinear time history analysis of seismically base-isolated structures, Lecture Notes in Mech. Eng. (2020) 1340–1353. https://doi.org/10.1007/978-3-030-41057-5_108
[14] N. Vaiana, S. Sessa, F. Marmo, and L. Rosati, Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method, Nonlinear Dyn. 98.4 (2019) 2879–2901. https://doi.org/10.1007/s11071-019-05022-5