Numerical modeling of dynamic crack propagation mechanisms using a moving mesh technique based on the ALE formulation

Numerical modeling of dynamic crack propagation mechanisms using a moving mesh technique based on the ALE formulation

Arturo Pascuzzo, Fabrizio Greco, Paolo Lonetti, Domenico Ammendolea, Giulia Sansone

download PDF

Abstract. This work proposes a new FE model to predict dynamic crack propagation mechanisms in quasi-brittle materials. The numerical strategy uses a Moving Mesh (MM) technique consistent with the Arbitrary Lagrangian-Eulerian (ALE) formulation to reproduce the variation of the geometry of the computational domain caused by dynamically growing cracks. Specifically, the motion of the mesh nodes takes place consistently with conditions dictated by classic Fracture Mechanics, which provide conditions concerning the direction of propagation and the velocity of advancing cracks. As a remarkable key novelty, the proposed method introduces the ALE formulation of the M-integral for extracting Dynamic Stress Intensity Factors (DSIFs) at a moving crack front. This formulation allows extracting fracture variables on deforming elements without losing accuracy. Comparisons with analytical and numerical data are proposed to assess the validity and efficiency of the proposed strategy.

Keywords
Crack Propagation, Moving Mesh Technique, Finite Element Method

Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Arturo Pascuzzo, Fabrizio Greco, Paolo Lonetti, Domenico Ammendolea, Giulia Sansone, Numerical modeling of dynamic crack propagation mechanisms using a moving mesh technique based on the ALE formulation, Materials Research Proceedings, Vol. 26, pp 267-272, 2023

DOI: https://doi.org/10.21741/9781644902431-44

The article was published as article 44 of the book Theoretical and Applied Mechanics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Pranno, F. Greco, P. Lonetti, R. Luciano, U. De Maio, An improved fracture approach to investigate the degradation of vibration characteristics for reinforced concrete beams under progressive damage, International Journal of Fatigue 163 (2022) 107032. https://doi.org/10.1016/j.ijfatigue.2022.107032
[2] U. De Maio, F. Greco, L. Leonetti, P. Nevone Blasi, A. Pranno, A cohesive fracture model for predicting crack spacing and crack width in reinforced concrete structures, Engineering Failure Analysis 139 (2022) 106452. https://doi.org/10.1016/j.engfailanal.2022.106452
[3] U. De Maio, F. Greco, L. Leonetti, P. Nevone Blasi, A. Pranno, An investigation about debonding mechanisms in FRP-strengthened RC structural elements by using a cohesive/volumetric modeling technique, Theoretical and Applied Fracture Mechanics 117 (2022) 103199. https://doi.org/10.1016/j.tafmec.2021.103199
[4] U. De Maio, N. Fantuzzi, F. Greco, L. Leonetti, A. Pranno, Failure Analysis of Ultra High-Performance Fiber-Reinforced Concrete Structures Enhanced with Nanomaterials by Using a Diffuse Cohesive Interface Approach, 10(9) (2020) 1792. https://doi.org/10.3390/nano10091792
[5] A. Pranno, F. Greco, L. Leonetti, P. Lonetti, R. Luciano, U. De Maio, Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials, Composite Structures 282 (2022) 115032. https://doi.org/10.1016/j.compstruct.2021.115032
[6] A. Pascuzzo, F. Greco, L. Leonetti, P. Lonetti, A. Pranno, C. Ronchei, Investigation of mesh dependency issues in the simulation of crack propagation in quasi-brittle materials by using a diffuse interface modeling approach, 45(3) (2022) 801-820. https://doi.org/10.1111/ffe.13635
[7] F. Greco, L. Leonetti, R. Luciano, A. Pascuzzo, C. Ronchei, A detailed micro-model for brick masonry structures based on a diffuse cohesive-frictional interface fracture approach, Procedia Structural Integrity 25 (2020) 334-347. https://doi.org/10.1016/j.prostr.2020.04.038
[8] F. Greco, D. Gaetano, L. Leonetti, P. Lonetti, A. Pascuzzo, Structural and seismic vulnerability assessment of the Santa Maria Assunta Cathedral in Catanzaro (Italy): classical and advanced approaches for the analysis of local and global failure mechanisms, Frat. Integrita Strutr. 16(60) (2022). https://doi.org/10.3221/IGF-ESIS.60.32
[9] U. De Maio, D. Cendón, F. Greco, L. Leonetti, P. Nevone Blasi, J. Planas, Investigation of concrete cracking phenomena by using cohesive fracture-based techniques: A comparison between an embedded crack model and a refined diffuse interface model, Theoretical and Applied Fracture Mechanics 115 (2021) 103062. https://doi.org/10.1016/j.tafmec.2021.103062
[10] D. Bruno, F. Greco, P. Lonetti, Computation of Energy Release Rate and Mode Separation in Delaminated Composite Plates by Using Plate and Interface Variables, Mechanics of Advanced Materials and Structures 12(4) (2005) 285-304. https://doi.org/10.1080/15376490590953563
[11] M. Pingaro, E. Reccia, P. Trovalusci, R. Masiani, Fast statistical homogenization procedure (FSHP) for particle random composites using virtual element method, Computational Mechanics 64(1) (2019) 197-210. https://doi.org/10.1007/s00466-018-1665-7
[12] M. Pingaro, E. Reccia, P. Trovalusci, Homogenization of Random Porous Materials With Low-Order Virtual Elements, ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg 5(3) (2019). https://doi.org/10.1115/1.4043475
[13] F. Greco, P. Lonetti, A. Pascuzzo, A moving mesh FE methodology for vehicle–bridge interaction modeling, Mechanics of Advanced Materials and Structures 27(14) (2020) 1256-1268. https://doi.org/10.1080/15376494.2018.1506955
[14] F. Greco, L. Leonetti, P. Lonetti, A novel approach based on ALE and delamination fracture mechanics for multilayered composite beams, Composites Part B: Engineering 78 (2015) 447-458. https://doi.org/10.1016/j.compositesb.2015.04.004
[15] COMSOL, COMSOL Multiphysics® v. 5.4, Stockholm, Sweden, 2018.
[16] P. Lonetti, A. Pascuzzo, Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges, Struct Eng Mech 51(5) (2014) 847-866. https://doi.org/10.12989/sem.2014.51.5.847
[17] D. Bruno, P. Lonetti, A. Pascuzzo, An optimization model for the design of network arch bridges, Computers & Structures 170 (2016) 13-25. https://doi.org/10.1016/j.compstruc.2016.03.011
[18] F. Greco, D. Ammendolea, P. Lonetti, A. Pascuzzo, Crack propagation under thermo-mechanical loadings based on moving mesh strategy, Theoretical and Applied Fracture Mechanics 114 (2021) 103033. https://doi.org/10.1016/j.tafmec.2021.103033
[19] D. Ammendolea, F. Greco, P. Lonetti, R. Luciano, A. Pascuzzo, Crack propagation modeling in functionally graded materials using Moving Mesh technique and interaction integral approach, Composite Structures 269 (2021) 114005. https://doi.org/10.1016/j.compstruct.2021.114005
[20] A. Pascuzzo, F. Greco, P. Lonetti, D. Ammendolea, Dynamic fracture analysis in quasi-brittle materials via a finite element approach based on the combination of the ALE formulation and M-integral method, Engineering Failure Analysis (2022) 106627. https://doi.org/10.1016/j.engfailanal.2022.106627
[21] L.B. Freund, Dynamic fracture mechanics, Cambridge university press1998.
[22] T. Menouillard, J.-H. Song, Q. Duan, T. Belytschko, Time dependent crack tip enrichment for dynamic crack propagation, International Journal of Fracture 162 (2010) 33-49. https://doi.org/10.1007/s10704-009-9405-9
[23] H. Chen, Q. Wang, W. Zeng, G.R. Liu, J. Sun, L. He, T.Q. Bui, Dynamic brittle crack propagation modeling using singular edge-based smoothed finite element method with local mesh rezoning, European Journal of Mechanics – A/Solids 76 (2019) 208-223. https://doi.org/10.1016/j.euromechsol.2019.04.010