Dynamic performance of an aerostatic pad with internal pressure control

Dynamic performance of an aerostatic pad with internal pressure control

Federico Colombo, Luigi Lentini, Terenziano Raparelli, Andrea Trivella

download PDF

Abstract. This paper presents a theoretical study on the dynamic performance of an aerostatic pad with an internal pressure control. The trend of the dynamic stiffness and damping over the frequency domain is analysed.

Keywords
Compensation, Diaphragm Valve, Aerostatic Bearings, Infinite Stiffness

Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Federico Colombo, Luigi Lentini, Terenziano Raparelli, Andrea Trivella, Dynamic performance of an aerostatic pad with internal pressure control, Materials Research Proceedings, Vol. 26, pp 189-194, 2023

DOI: https://doi.org/10.21741/9781644902431-31

The article was published as article 31 of the book Theoretical and Applied Mechanics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Gao, Q., Chen, W., Lu, L., Huo, D., Cheng, K.: Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives. Trib. Intern. 139, (2019), 1-17. https://doi.org/10.1016/j.triboint.2019.02.020
[2] Charki, A., Diop, K., Champmartin, S., Ambari, A.: Numerical simulation and experimental study of thrust air bearings with multiple orifices. International Journal of Mechanical Sciences. 72, (2013), 28–38. https://doi.org/10.1016/j.ijmecsci.2013.03.006
[3] Ma, W., Cui, J., Liu, Y., Tan, J.: Improving the pneumatic hammer stability of aero-static thrust bearing with recess using damping orifices. Trib. Intern. 103, (2016), 281–288. https://doi.org/10.1016/j.triboint.2016.06.009
[4] Yoshimoto, S., Tamura, J., Nakamura, T.: Dynamic tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Trib. Intern. 32, (1999), 731–738. https://doi.org/10.1016/S0301-679X(00)00004-9
[5] Kwan, Y.B.P., Corbett, J.: Porous aerostatic bearings: an updated review. Wear 222, 1998, 69–73. https://doi.org/10.1016/S0043-1648(98)00285-3
[6] Al-Bender, F.: On the modelling of the dynamic characteristics of aerostatic bearing films: From stability analysis to active compensation. Precision Engineering. 33, (2009), 117–126. https://doi.org/10.1016/j.precisioneng.2008.06.003
[7] Maamari, N., Krebs, A., Weikert, S., Wegener, K.: Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance. Trib. Intern. 129, (2019), 297–313. https://doi.org/10.1016/j.triboint.2018.08.024
[8] Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Actively compensated aerostatic thrust bearing: design, modelling and experimental validation. Meccanica, 52, (2017), 1–16. https://doi.org/10.1007/s11012-017-0689-y
[9] Ghodsiyeh, D., Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: An infinite stiffness aerostatic pad with a diaphragm valve. Tribology International. 141, (2020), 105964. https://doi.org/10.1016/j.triboint.2019.105964
[10] Lentini, L., Colombo, F., Raparelli, T., Trivella, A., Viktorov, V.: An aerostatic pad with an internal pressure control. E3S Web Conferences. 197, (2020), 07002. https://doi.org/10.1051/e3sconf/202019707002
[11] Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: A Lumped Model for Grooved Aerostatic Pad. Advances in Service and Industrial Robotics. Springer (2019), 678–686. https://doi.org/10.1007/978-3-030-00232-9_71
[12] Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: Dynamic behaviour and stability analysis of a compensated aerostatic pad. 76th Italian National Congress ATI, 15-17 Settembre 2021. https://doi.org/10.1051/e3sconf/202131205003