Warm forming of thermoplastic fibre metal laminates

Warm forming of thermoplastic fibre metal laminates

Mohamed Harhash, Wei Hua, Gerhard Ziegmann, Heinz Palkowski

download PDF

Abstract. In this paper, the forming behaviour of sheet-like metal/polymer/metal (MPM) and thermoplastic fibre metal laminates (TFMLs) is introduced. TFMLs are based on thin metallic cover sheets and fibre-reinforced thermoplastic matrix (here polyamide 6). With this material combination, the specific mechanical, structural, thermal and acoustic properties can be improved and designed compared to the monomaterials and laminates without fibre reinforcements. However, the restricted formability of TFMLs at room temperature is a strong limitation. Therefore, the approach of this study is concerned with the fundamental description of the influence of warm forming on the degree of the forming improvement of pre-bonded TFMLs sheets experimentally via the investigation of the deep drawability and determining the forming limit curves compared to the formability of steel and MPM sheets. Two elevated test temperatures (200 and 235 °C) besides the room temperature are considered. The results of this approach revealed that warm forming could lead to over 300 % improvement of the forming limit curve (FLC) level of TFML; however, an ignorable difference between 200 and 235 °C is found. For steel and MPM sheets, increasing the temperature showed a slight improvement. Regarding deep drawing, similar results like for FLC were found, where the drawing depth of TFML could be increased from approx. 15 mm up to at least 40 mm before cracking. However, other failure types arose like wrinkling and core squeezing-out. Therefore, a one-step deep drawing approach for TFMLs is foreseen, where the adhesion and forming processes take place simultaneously.

Forming, Deep Drawing, Thermoplastic Fibre Metal Laminates

Published online 3/17/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Mohamed Harhash, Wei Hua, Gerhard Ziegmann, Heinz Palkowski, Warm forming of thermoplastic fibre metal laminates, Materials Research Proceedings, Vol. 25, pp 439-446, 2023

DOI: https://doi.org/10.21741/9781644902417-54

The article was published as article 54 of the book Sheet Metal 2023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] F. Schubert, N.K Minar, M. Sause, A. Monden, Thermoplastic Fiber Metal Laminates for Automated Production, Lightweight des worldw. 12 (2019) 12–7. https://doi.org/10.1007/s41777-019-0031-6
[2] T. Sinmazçelik, E. Avcu, M.Ö Bora, O. Çoban, A review: Fibre metal laminates, background, bonding types and applied test methods, Mater. Des. 32 (2011) 3671–85. https://doi.org/10.1016/j.matdes.2011.03.011
[3] A. Vlot, Impact loading on fibre metal laminates, Int. J. Impact Eng. 18 (1996) 291–307. https://doi.org/10.1016/0734-743X(96)89050-6
[4] Gude M, Lieberwith H, Meschut G, Tekkaya AE, Zäh M (eds.), FOREL-Studie 2018: Ressourceneffizienter Leichtbau für die Mobilität: Wandel – Prognose – Transfer (German). Plattform FOREL; 2018.
[5] D. Nestler, H. Jung, S. Arnold, B. Wielage, S. Nendel, L. Kroll, Thermoplastische Hybridlaminate mit variabler Metallkomponente, Mat.-wiss. u. Werkstofftech. 45 (2014) 531–6. https://doi.org/10.1002/mawe.201400259
[6] L. Keßler, R. Dams, A. Marx, M. Theiss, Erweiterung der Simulation für die virtuelle Fertigungskette von Sandwich-Werkstoffen am Beispiel LITECOR®. In: EFB, editor. 35. EFB-Kolloquium – Tagungsband, 1st ed. Hannover: EFB; 2015, p. 33–42.
[7] W. Hufenbach, J. Jaschniski, T. Weber, D. Weck, Numerical and experimental investigations on HYLITE sandwich sheets as an alternative sheet metal, Arch. Civ. Mech. Eng. 8 (2008) 67–80. https://doi.org/10.1016/S1644-9665(12)60194-0
[8] M.H Parsa, M. Ettehad, P.H Matin, Al Ahkami, S. Nasher, Experimental and Numerical Determination of Limiting Drawing Ratio of Al3105-Polypropylene-Al3105 Sandwich Sheets, J. Eng. Mater. Technol. 132 (2010) 31004. https://doi.org/10.1115/1.4001264
[9] A.E. Tekkaya, M. Hahn, L. Hiegemann, C. Weddeling, N. Ben Khalifa, Umformen faserverstärkter thermoplastischer Kunststoff-Halbzeuge mit metallischen Deckblechen für den Leichtbau. In: EFB, editor. 35. EFB-Kolloquium – Tagungsband, 1st ed. Hannover: EFB; 2015, p. 185–199.
[10] B.-A. Behrens, K. Dilger, K. Lippky, L. Kaempf, S. Hübner, S. Hartwig et al., Combined deep drawing and fusion bonding of structural FRP-metal hybride parts, Procedia Manuf. 29 (2019) 296–304. https://doi.org/10.1016/j.promfg.2019.02.141
[11] M. Harhash, T. Fischer, M. Grubenmann, W. Hua, J. Heingärtner, M. Kuhtz et al., Top-hat crashboxes of thermoplastic fibre-metal-laminates processed in one-step thermoforming: Experimental and numerical study, Compos. B Eng. 226 (2021) 109367. https://doi.org/10.1016/j.compositesb.2021.109367
[12] LANXESS Germany GmbH, Tepex® Material Data Sheet – Tepex® dynalite 102-RG600(x)/47% – Roving Glass – PA6 Consolidated Composite Laminate. [September 15, 2021]; Available from: https://lanxess.com/-/media/Project/Lanxess/Corporate-Internet/Products-and-Solutions/Brands/Tepex/Data-sheets/MDS102RG600x47.pdf.
[13] W. Hua, T. Fischer, M. Harhash, G. Ziegmann, H. Palkowski, Study on processing galvanized steel/PA6 sandwich composites by hot-pressing: Influence of interface properties and surface treatment on the adhesion strength, Compos. Struct. 236 (2020) 111779. https://doi.org/10.1016/j.compstruct.2019.111779
[14] W. Hua, Forming behaviour of sandwich materials made of steel covers and polyamide cores with or without glass fibre reinforcements. Clausthal-Zellerfeld, Germany: TU Clausthal; 2022.
[15] M. Merklein, A. Kuppert, M. Geiger, Time dependent determination of forming limit diagrams, CIRP Annals – Manufacturing Technology. 59 (2010) 295–8. https://doi.org/10.1016/j.cirp.2010.03.001
[16] M. Harhash, Forming behaviour of multilayer metal/polymer/metal systems [PhD Thesis]. Clausthal-Zellerfeld, Germany: TU Clausthal; 2017.
[17] C.K Kella, Formability and Springback Analysis of Aluminum/Polypropylene/Aluminum Sandwich Laminates: My University; 2022. https://doi.org/10.3390/jmmp6060152
[18] T. Mennecart, S. Gies, N. Ben Khalifa, A. Tekkaya, Analysis of the Influence of Fibers on the Formability of Metal Blanks in Manufacturing Processes for Fiber Metal Laminates, J. Manuf. Mater. Process. 3 (2019) 2. https://doi.org/10.3390/jmmp3010002
[19] C.P. Singh, G. Agnihotri, Study of Deep Drawing Process Parameters: A Review, Int J Sci Res Publ. 5 (2015) 1–15.