Die-less forming of fiber-reinforced thermoplastic sheets and metal wire mesh

Die-less forming of fiber-reinforced thermoplastic sheets and metal wire mesh

Jan-Erik Rath, Thorsten Schüppstuhl

download PDF

Abstract. The growing market for fiber-reinforced thermoplastics (FRTP) requires new flexible production processes for prototype and small series production, as conventional forming techniques involving molds are not cost efficient in these cases. Inspired by incremental sheet metal forming (ISF), an alternative manufacturing processes for the forming of FRTP with just two robot guided standard tools is outlined. To maintain a locally formed shape in the heated, flexible fabric, auxiliary wire mesh metal is used as it has similar deformation mechanisms, especially shearability, while being sufficiently self-supporting. Feasibility of the approach is discussed and investigated in basic experiments.

Fiber Reinforced Plastic, Free Forming, Incremental Sheet Forming

Published online 3/17/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Jan-Erik Rath, Thorsten Schüppstuhl, Die-less forming of fiber-reinforced thermoplastic sheets and metal wire mesh, Materials Research Proceedings, Vol. 25, pp 37-44, 2023

DOI: https://doi.org/10.21741/9781644902417-5

The article was published as article 5 of the book Sheet Metal 2023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] P. Davies, W.J. Cantwell, P.-Y. Jar, P.-E. Bourban, V. Zysman, H.H. Kausch, Joining and repair of a carbon fibre-reinforced thermoplastic, Compos. 22 (1991) 425–431. https://doi.org/10.1016/0010-4361(91)90199-Q
[2] M. Biron, Thermoplastics and thermoplastic composites: Technical information for plastics users, Elsevier BH, Amsterdam, 2006. https://doi.org/10.1016/B978-185617478-7.50005-2
[3] P. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing and Design, CRC Press, 2008. https://doi.org/10.1201/9781420005981
[4] D.M. Bigg, D.F. Hiscock, J.R. Preston, E.J. Bradbury, High Performance Thermoplastic Matrix Composites, J. Thermoplast. Compos. Mater. 1 (1988) 146–160. https://doi.org/10.1177/089270578800100203
[5] I. Martin, D. Del Saenz Castillo, A. Fernandez, A. Güemes, Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review, J. Compos. Sci. 4 (2020) 149. https://doi.org/10.3390/jcs4040149
[6] M. Flemming, G. Ziegmann, S. Roth, Faserverbundbauweisen: Fertigungsverfahren mit duroplastischer Matrix, Springer Verlag, 1996. https://doi.org/10.1007/978-3-642-61432-3
[7] G. Ehrenstein, Faserverbund-Kunststoffe, Hanser Verlag, 2006. https://doi.org/10.3139/9783446457546.fm
[8] B.-A. Behrens, A. Raatz, S. Hübner, C. Bonk, F. Bohne, C. Bruns, M. Micke-Camuz, Automated Stamp Forming of Continuous Fiber Reinforced Thermoplastics for Complex Shell Geometries, Procedia CIRP 66 (2017) 113–118. https://doi.org/10.1016/j.procir.2017.03.294
[9] T. Hennige, Flexible Formgebung von Blechen durch Laserstrahlumformen, Meisenbach, Bamberg, 2001.
[10] A.K. Miller, M. Gur, A. Peled, A. Payne, E. Menzel, Die-Less Forming of Thermoplastic- Matrix, Continuous-Fiber Composites, J. Compos. Mater. 24 (1990) 346–381. https://doi.org/10.1177/002199839002400401
[11] A. Rosochowski, A. Matuszak, Rapid tooling: the state of the art, J. Mater. Process. Technol. 106 (2000) 191–198. https://doi.org/10.1016/S0924-0136(00)00613-0
[12] T.Z. Sudbury, R. Springfield, V. Kunc, C. Duty, An assessment of additive manufactured molds for hand-laid fiber reinforced composites, Int. J. Adv. Manuf. Technol. 90 (2017) 1659–1664. https://doi.org/10.1007/s00170-016-9464-9
[13] D. Afonso, R. Alves de Sousa, R. Torcato, L. Pires, Incremental Forming as a Rapid Tooling Process, Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-030-15360-1
[14] A. Brent Strong, P.B. Hauwiller, Incremental Forming of Large Thermoplastic Composites, J. Thermoplast. Compos. Mater. 2 (1989) 122–132. https://doi.org/10.1177/089270578900200204
[15] S.G. Kaufman, B.L. Spletzer, T.L. Guess, Freeform fabrication of polymer-matrix composite structures, in: Proceedings of International Conference on Robotics and Automation, 1997, pp. 317–322.
[16] D.F. Walczyk, J.F. Hosford, J.M. Papazian, Using Reconfigurable Tooling and Surface Heating for Incremental Forming of Composite Aircraft Parts, J. Manuf. Sci. Eng. 125 (2003) 333–343. https://doi.org/10.1115/1.1561456
[17] T. Trzepieciński, Recent Developments and Trends in Sheet Metal Forming, Metals 10 (2020). Https://doi.org/10.3390/met10060779
[18] H. Zhu, H. Ou, A. Popov, Incremental sheet forming of thermoplastics: a review, Int. J. Adv. Manuf. Technol. 111 (2020) 565–587. https://doi.org/10.1007/s00170-020-06056-5
[19] S. Bagheri, A. Kami, M. Shakouri, Single point incremental forming of polyamide/30 wt% short glass fiber composite, J. Thermoplast. Compos. Mater. (2022) https://doi.org/10.1177/08927057221083497
[20] R. Conte, G. Ambrogio, D. Pulice, F. Gagliardi, L. Filice, Incremental Sheet Forming of a Composite Made of Thermoplastic Matrix and Glass-Fiber Reinforcement, Procedia Eng. 207 (2017) 819–824. https://doi.org/10.1016/j.proeng.2017.10.835
[21] G. Ambrogio, R. Conte, F. Gagliardi, L. de Napoli, L. Filice, P. Russo, A new approach for forming polymeric composite structures, Compos. Struct. 204 (2018) 445–453. https://doi.org/10.1016/j.compstruct.2018.07.106
[22] A. Al-Obaidi, A. Graf, V. Kräusel, M. Trautmann, Heat supported single point incremental forming of hybrid laminates for orthopedic applications, Procedia Manuf. 29 (2019) 21–27. https://doi.org/10.1016/j.promfg.2019.02.101
[23] R. Emami, M.J. Mirnia, M. Elyasi, A. Zolfaghari, An experimental investigation into single point incremental forming of glass fiber-reinforced polyamide sheet with different fiber orientations and volume fractions at elevated temperatures, J. Thermoplast. Compos. Mater. (2022). Https://doi.org/10.1177/08927057221074266
[24] M. Fiorotto, M. Sorgente, G. Lucchetta, Preliminary studies on single point incremental forming for composite materials, Int. J. Mater. Form. 3 (2010) 951–954. https://doi.org/10.1007/s12289-010-0926-6
[25] C. Hou, X. Su, X. Peng, X. Wu, D. Yang, Thermal-Assisted Single Point Incremental Forming of Jute Fabric Reinforced Poly(lactic acid) Biocomposites, Fibers Polym. 21 (2020) 2373–2379. https://doi.org/10.1007/s12221-020-1016-0
[26] A. Al-Obaidi, A. Kunke, V. Kräusel, Hot single-point incremental forming of glass-fiber-reinforced polymer (PA6GF47) supported by hot air, J. Manuf. Process. 43 (2019) 17–25. https://doi.org/10.1016/j.jmapro.2019.04.036
[27] J.-E. Rath, R. Graupner, T. Schüppstuhl, Die-Less Forming of Fiber-Reinforced Plastic Composites, in: K.-Y. Kim, L. Monplaisir, J. Rickli (Eds.), Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus, Springer International Publishing, Cham, 2023, pp. 3–14. https://doi.org/10.1007/978-3-031-18326-3_1
[28] J.-E. Rath, L.-S. Schwieger, T. Schüppstuhl, Robotic Die-Less Forming Strategy for Fiber-Reinforced Plastic Composites Production, Procedia CIRP 107 (2022) 1281–1286. https://doi.org/10.1016/j.procir.2022.05.145
[29] F. Heieck, Qualitätsbewertung von Faser-Kunststoff-Verbunden mittels optischer Texturanalyse auf 3D-Preformoberflächen. Dissertation, 2019.
[30] T. Gries, D. Veit, B. Wulfhorst, Textile Fertigungsverfahren: Eine Einführung, Carl Hanser, 2014. https://doi.org/10.3139/9783446440579.fm
[31] M.P. Elkington, A. Sarkytbayev, C. Ward, Automated composite draping: a review, in: SAMPE 2017, 22.5.-25.05.2017.
[32] M.P. Elkington, C. Ward, A. Chatzimichali, K. Potter, Studying effects of preshearing on hand layup, Advanced Manufacturing: Polymer & Composites Science 1 (2015) 80–93. https://doi.org/10.1179/2055035914Y.0000000007