ZnO Thin Films: Fabrication Routes, and Applications


ZnO Thin Films: Fabrication Routes, and Applications

Minoo Alizadeh Pirposhte, Debjita Mukherjee, Azadeh Jafarizadeh Dehaghani, Mojdeh Rahnama Ghahfarokh, Jhaleh Amirian, Agnese Brangule, Dace Bandere

Thin films have become a hot topic in the field of nanotechnology. Due to their optical and electrical characteristics, thin-film semiconductor oxides are among the semiconductor oxides with the greatest range of applications. The most popular semiconductor component is zinc oxide (ZnO). ZnO, a wide bandgap semiconductor (Eg = 3.37 eV at room temperature), have been widely used in electronic, optoelectronic, and information technology device platforms. Nano-ZnO thin films have a wide range of applications due to their remarkable properties. There are several methods for developing a thin layer of the ZnO nanomaterial. Sputtering, chemical vapor deposition (CVD), molecular beam epitaxy, pulsed laser deposition (PLD), and spray pyrolysis are among these methods. Although sputtering is the most commonly used method for high-quality applications, chemical vapor deposition and spray pyrolysis are also popular due to their low cost and ease of use. This chapter provides a brief overview of the various fabrication routes, characterization techniques, and applications of ZnO thin films, allowing us to investigate the chemical, structural, optical, and electrical properties of ZnO thin films, as well as their various applications.

Zinc Oxide (ZnO), Thin Film, Fabrication Techniques, Semiconductor, Routes

Published online , 31 pages

Citation: Minoo Alizadeh Pirposhte, Debjita Mukherjee, Azadeh Jafarizadeh Dehaghani, Mojdeh Rahnama Ghahfarokh, Jhaleh Amirian, Agnese Brangule, Dace Bandere, ZnO Thin Films: Fabrication Routes, and Applications, Materials Research Foundations, Vol. 146, pp 263-293, 2023

DOI: https://doi.org/10.21741/9781644902394-9

Part of the book on ZnO and Their Hybrid Nano-Structures

[1] G. Busch, Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years, European Journal of Physics, 10 (1989) 254. https://doi.org/10.1088/0143-0807/10/4/002
[2] H. Morkoç, Ü. Özgür, ZnO: fundamentals, materials and device technology, John Wiley & Sons, 2008. https://doi.org/10.1002/9783527623945
[3] P. Dhiman, A. Kumar, M. Shekh, G. Sharma, G. Rana, D.-V.N. Vo, N. AlMasoud, M. Naushad, Z.A. Alothman, Robust magnetic ZnO-Fe2O3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection, Environmental Research, 197 (2021) 111074. https://doi.org/10.1016/j.envres.2021.111074
[4] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, Morkoç, A comprehensive review of ZnO materials and devices, Journal of applied physics, 98 (2005) 11. https://doi.org/10.1063/1.1992666
[5] L. Intilla, Study of ZnO properties applied to thin film transistors, in, UCL (University College London), 2016.
[6] M. Khiari, M. Gilliot, M. Lejeune, F. Lazar, A. Hadjadj, Preparation of Very Thin ZnO Films by Liquid Deposition Process: Review of Key Processing Parameters, Coatings, 12 (2022) 65. https://doi.org/10.3390/coatings12010065
[7] B.K. Das, Growth of ZnO Thin Films on Silicon and Glass Substrate by Pulsed Laser Deposition a Thesis, Journal of Physics & Astronomy, 9 (2021) 1-12. https://doi.org/10.2139/ssrn.3840984
[8] C. Jagadish, S.J. Pearton, ZnO bulk, thin films and nanostructures: processing, properties, and applications, Elsevier, 2011.
[9] P. Dhiman, J. Chand, S. Verma, Sarveena, M. Singh, Ni, Fe Co-doped ZnO nanoparticles synthesized by solution combustion method, AIP Conference Proceedings, 1591 (2014) 1443-1445. https://doi.org/10.1063/1.4872990
[10] K.N. Tapily, Synthesis of ALD ZnO and thin film materials optimization for UV photodetector applications, Old Dominion University, 2011.
[11] P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A.A. Ghfar, G. Kumar, M. Singh, Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment, Journal of Cleaner Production, 165 (2017) 1542-1556. https://doi.org/10.1016/j.jclepro.2017.07.245
[12] A.R. Hutson, Hall effect studies of doped ZnO single crystals, Physical review, 108 (1957) 222. https://doi.org/10.1103/PhysRev.108.222
[13] O. Fritsch, Elektrisches und optisches Verhalten von Halbleitern. X Elektrische Messungen an Zinkoxyd, Annalen der Physik, 414 (1935) 375-401. https://doi.org/10.1002/andp.19354140406
[14] D.C. Look, Recent advances in ZnO materials and devices, Materials Science and Engineering: B, 80 (2001) 383-387. https://doi.org/10.1016/S0921-5107(00)00604-8
[15] G. Heiland, E. Mollwo, F. Stöckmann, Electronic processes in ZnO, in: Solid state physics, Elsevier, 1959, pp. 191-323. https://doi.org/10.1016/S0081-1947(08)60481-6
[16] J. Haynes, Experimental observation of the excitonic molecule, Physical Review Letters, 17 (1966) 860. https://doi.org/10.1103/PhysRevLett.17.860
[17] F. Hickernell, DC triode sputtered ZnO surface elastic wave transducers, Journal of Applied Physics, 44 (1973) 1061-1071. https://doi.org/10.1063/1.1662307
[18] N. Foster, G. Rozgonyi, ZnO film transducers, Applied Physics Letters, 8 (1966) 221-223. https://doi.org/10.1063/1.1754565
[19] R. Laudise, E. Kolb, A. Caporaso, Hydrothermal growth of large sound crystals of ZnO, Journal of the American Ceramic Society, 47 (1964) 9-12. https://doi.org/10.1111/j.1151-2916.1964.tb14632.x
[20] P.R. Emtage, The physics of ZnO varistors, Journal of Applied Physics, 48 (1977) 4372-4384. https://doi.org/10.1063/1.323391
[21] M. Inada, Crystal phases of nonohmic ZnO ceramics, Japanese Journal of Applied Physics, 17 (1978) 1. https://doi.org/10.1143/JJAP.17.1
[22] S. Tiku, C. Lau, K. Lakin, Chemical vapor deposition of ZnO epitaxial films on sapphire, Applied physics letters, 36 (1980) 318-320. https://doi.org/10.1063/1.91477
[23] R.J. Tilley, Crystals and crystal structures, John Wiley & Sons, 2020.
[24] A. Djurišić, A.M.C. Ng, X. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Progress in quantum electronics, 34 (2010) 191-259. https://doi.org/10.1016/j.pquantelec.2010.04.001
[25] K. Ellmer, A. Klein, B. Rech, Transparent conductive ZnO: basics and applications in thin film solar cells, (2007). https://doi.org/10.1007/978-3-540-73612-7
[26] M. Habibi, M. Khaledi Sardashti, Preparation and proposed mechanism of ZnO Nanostructure Thin Film on Glass with Highest c-axis Orientation, International Journal of Nanoscience and Nanotechnology, 4 (2008) 13-16. https://doi.org/10.1155/2008/356765
[27] A. Kumar, P. Dhiman, M. Singh, Effect of Fe-doping on the structural, optical and magnetic properties of ZnO thin films prepared by RF magnetron sputtering, Ceramics International, 42 (2016) 7918-7923. https://doi.org/10.1016/j.ceramint.2016.01.136
[28] D. WANG, Fabrication and Characterization of ZnO Related Materials Thin Films for Optical Device Application, (2012).
[29] A. Noua, R. Guemini, Preparation and characterization of thin films nanostructures based on ZnO and other oxides, (2019).
[30] M. Masłyk, M. Borysiewicz, M. Wzorek, T. Wojciechowski, M. Kwoka, E. Kamińska, Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering, Applied Surface Science, 389 (2016) 287-293. https://doi.org/10.1016/j.apsusc.2016.07.098
[31] S. Konstantinidis, A. Hemberg, J. Dauchot, M. Hecq, Deposition of ZnO layers by high-power impulse magnetron sputtering, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25 (2007) L19-L21. https://doi.org/10.1116/1.2735968
[32] M.S. Aida, M.S. Abdel-wahab, A.H. Hammad, Impact of samarium on the structural and physical properties of sputtered ZnO thin films, Optik, 250 (2022) 168322. https://doi.org/10.1016/j.ijleo.2021.168322
[33] D.B. Potter, I.P. Parkin, C.J. Carmalt, The effect of solvent on Al-doped ZnO thin films deposited via aerosol assisted CVD, RSC advances, 8 (2018) 33164-33173. https://doi.org/10.1039/C8RA06417B
[34] D. Geohegan, D. Chrisey, G. Hubler, Pulsed laser deposition of thin films, Chrisey and GK Hubler (eds), Wiely, New York, (1994) 59-69.
[35] V. Craciun, S. Amirhaghi, D. Craciun, J. Elders, J.G. Gardeniers, I.W. Boyd, Effects of laser wavelength and fluence on the growth of ZnO thin films by pulsed laser deposition, Applied surface science, 86 (1995) 99-106. https://doi.org/10.1016/0169-4332(94)00405-6
[36] S. Heitsch, C. Bundesmann, G. Wagner, G. Zimmermann, A. Rahm, H. Hochmuth, G. Benndorf, H. Schmidt, M. Schubert, M. Lorenz, Low temperature photoluminescence and infrared dielectric functions of pulsed laser deposited ZnO thin films on silicon, Thin Solid Films, 496 (2006) 234-239. https://doi.org/10.1016/j.tsf.2005.08.305
[37] S. Studenikin, N. Golego, M. Cocivera, Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution, Journal of Applied Physics, 83 (1998) 2104-2111. https://doi.org/10.1063/1.366944
[38] N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties, Current Applied Physics, 12 (2012) 1283-1287. https://doi.org/10.1016/j.cap.2012.03.012
[39] A.N. Ech-Chergui, A.S. Kadari, M.M. Khan, A. Popad, Y. Khane, M.h. Guezzoul, C. Leostean, D. Silipas, L. Barbu-Tudoran, Z. Abdelhalim, F. Bennabi, K. Driss-Khodja, B. Amrani, Spray pyrolysis-assisted fabrication of Eu-doped ZnO thin films for antibacterial activities under visible light irradiation, Chemical Papers, (2022). https://doi.org/10.1007/s11696-022-02543-z
[40] C. Manoharan, G. Pavithra, S. Dhanapandian, P. Dhamodharan, Effect of In doping on the properties and antibacterial activity of ZnO films prepared by spray pyrolysis, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149 (2015) 793-799. https://doi.org/10.1016/j.saa.2015.05.019
[41] M. Srivathsa, P. Kumar, B.V. Rajendra, Ultraviolet photoconductivity and photoluminescence properties of spray pyrolyzed ZnO nanostructure: Effect of deposition temperature, Optical Materials, 131 (2022) 112726. https://doi.org/10.1016/j.optmat.2022.112726
[42] A. Ott, R. Chang, Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates, Materials Chemistry and Physics, 58 (1999) 132-138. https://doi.org/10.1016/S0254-0584(98)00264-8
[43] W. Water, S.-Y. Chu, Physical and structural properties of ZnO sputtered films, Materials Letters, 55 (2002) 67-72. https://doi.org/10.1016/S0167-577X(01)00621-8
[44] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Superlattices and Microstructures, 34 (2003) 3-32. https://doi.org/10.1016/S0749-6036(03)00093-4
[45] D.C. Look, B. Claflin, Y.I. Alivov, S.-J. Park, The future of ZnO light emitters, physica status solidi (a), 201 (2004) 2203-2212. https://doi.org/10.1002/pssa.200404803
[46] M. Zaharescu, S. Mihaiu, A. Toader, I. Atkinson, J. Calderon-Moreno, M. Anastasescu, M. Nicolescu, M. Duta, M. Gartner, K. Vojisavljevic, ZnO based transparent conductive oxide films with controlled type of conduction, Thin Solid Films, 571 (2014) 727-734. https://doi.org/10.1016/j.tsf.2014.02.090
[47] D. Bagnall, Y. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature, Applied physics letters, 70 (1997) 2230-2232. https://doi.org/10.1063/1.118824
[48] A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. Tang, G.K. Wong, Y. Segawa, Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE, Materials Science and Engineering: B, 54 (1998) 24-28. https://doi.org/10.1016/S0921-5107(98)00120-2
[49] Mursal, Irhamni, Bukhari, Z. Jalil, Structural and Optical Properties of ZnO based Thin Films Deposited by Sol-Gel Spin Coating Method, Journal of Physics: Conference Series, 1116 (2018) 032020. https://doi.org/10.1088/1742-6596/1116/3/032020
[50] E.Y. Muslih, B. Munir, Fabrication of ZnO Thin Film through Chemical Preparations, London: IntechOpen Limited 2018. https://doi.org/10.5772/intechopen.74985
[51] S.A. Hooker, Nanotechnology advantages applied to gas sensor development, in: The nanoparticles 2002 conference proceedings, Business Communications Co., Inc., 2002, pp. 1-7.
[52] S.P. Ghosh, Synthesis & Characterizations of ZnO Thin Films and Nanostructures by Modified Aqueous Chemical Growth Method for Sensor Applications, in, 2015.
[53] J. Prakash, V. Kumar, L. Erasmus, M. Duvenhage, G. Sathiyan, S. Bellucci, S. Sun, H.C. Swart, Phosphor polymer nanocomposite: ZnO: Tb3+ embedded polystyrene nanocomposite thin films for solid-state lighting applications, ACS Applied Nano Materials, 1 (2018) 977-988. https://doi.org/10.1021/acsanm.7b00387
[54] M. Depaz, Processing and characterization of ZnO thin films, (2007).
[55] C.-Y. Lu, S.-P. Chang, S.-J. Chang, T.-J. Hsueh, C.-L. Hsu, Y.-Z. Chiou, I.-C. Chen, A lateral ZnO nanowire UV photodetector prepared on a ZnO: Ga/glass template, Semiconductor science and technology, 24 (2009) 075005. https://doi.org/10.1088/0268-1242/24/7/075005
[56] L.N. Balakrishnan, S. Gowrishankar, N. Gopalakrishnan, ${\rm NH} _ {3} $ Sensing by $ p $-ZnO Thin Films, IEEE Sensors Journal, 13 (2013) 2055-2060. https://doi.org/10.1109/JSEN.2013.2244592
[57] S.Y. Nam, Y.S. Choi, J.H. Lee, S.J. Park, J.Y. Lee, D.S. Lee, ZnO/p-GaN Heterostructure for Solar Cells and the Effect of ZnGa2O4 Interlayer on Their Performance, Journal of Nanoscience and Nanotechnology, 13 (2013) 448-451. https://doi.org/10.1166/jnn.2013.6943
[58] W. Liu, M. Wang, C. Xu, S. Chen, X. Fu, One-pot synthesis of ZnO2/ZnO composite with enhanced photocatalytic performance for organic dye removal, Journal of Nanoscience and Nanotechnology, 13 (2013) 657-665. https://doi.org/10.1166/jnn.2013.7091
[59] N. Batra, M. Tomar, V. Gupta, Al: ZnO thin film: An efficient matrix for cholesterol detection, Journal of Applied Physics, 112 (2012) 114701. https://doi.org/10.1063/1.4768450
[60] B. Bott, T. Jones, B. Mann, The detection and measurement of CO using ZnO single crystals, Sensors and Actuators, 5 (1984) 65-73. https://doi.org/10.1016/0250-6874(84)87007-9
[61] A. Jones, T. Jones, B. Mann, J. Firth, The effect of the physical form of the oxide on the conductivity changes produced by CH4, CO and H2O on ZnO, Sensors and Actuators, 5 (1984) 75-88. https://doi.org/10.1016/0250-6874(84)87008-0
[62] S.n. Flickyngerova, V. Tvarozek, P. Gaspierik, ZnO–A Unique Material for Advanced Photovoltaic Solar Cells, Journal of electrical engineering, 61 (2010) 291. https://doi.org/10.2478/v10187-010-0043-2
[63] M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells, Journal of applied physics, 101 (2007) 074903. https://doi.org/10.1063/1.2715554
[64] R.S. Ali, K.S. Sharba, A.M. Jabbar, S.S. Chiad, K.H. Abass, N.F. Habubi, Characterization of ZnO thin film/p-Si fabricated by vacuum evaporation method for solar cell applications, NeuroQuantology, 18 (2020) 26. https://doi.org/10.14704/nq.2020.18.1.NQ20103
[65] X. Ji, J. Song, T. Wu, Y. Tian, B. Han, X. Liu, H. Wang, Y. Gui, Y. Ding, Y. Wang, Fabrication of high-performance F and Al co-doped ZnO transparent conductive films for use in perovskite solar cells, Solar Energy Materials and Solar Cells, 190 (2019) 6-11. https://doi.org/10.1016/j.solmat.2018.10.009
[66] S. Agrawal, R. Rane, S. Mukherjee, ZnO thin film deposition for TCO application in solar cell, in: Conference Papers in Science, Hindawi, 2013. https://doi.org/10.1155/2013/718692
[67] J.A. Aranovich, D. Golmayo, A.L. Fahrenbruch, R.H. Bube, Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis, Journal of Applied Physics, 51 (1980) 4260-4268. https://doi.org/10.1063/1.328243
[68] D. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung, M. Razeghi, Electroluminescence at 375 nm from a Zn O∕ Ga N: Mg∕ c-Al 2 O 3 heterojunction light emitting diode, Applied physics letters, 88 (2006) 141918. https://doi.org/10.1063/1.2195009
[69] X.-L. Guo, J.-H. Choi, H. Tabata, T. Kawai, Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode, Japanese Journal of Applied Physics, 40 (2001) L177. https://doi.org/10.1143/JJAP.40.L177
[70] J. Lu, Z. Ye, G. Yuan, Y. Zeng, F. Zhuge, L. Zhu, B. Zhao, S. Zhang, Electrical characterization of ZnO-based homojunctions, Applied physics letters, 89 (2006) 053501. https://doi.org/10.1063/1.2245221
[71] J.H. Lim, C.K. Kang, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, UV electroluminescence emission from ZnO light‐emitting diodes grown by high‐temperature radiofrequency sputtering, Advanced Materials, 18 (2006) 2720-2724. https://doi.org/10.1002/adma.200502633
[72] H.S. Das, R. Das, P.K. Nandi, S. Biring, S.K. Maity, Influence of Ga-doped transparent conducting ZnO thin film for efficiency enhancement in organic light-emitting diode applications, Applied Physics A, 127 (2021) 1-7. https://doi.org/10.1007/s00339-021-04339-6
[73] N.H. Nickel, E. Terukov, ZnO-A Material for Micro-and Optoelectronic Applications: Proceedings of the NATO Advanced Research Workshop on ZnO as a Material for Micro-and Optoelectronic Applications, held in St. Petersburg, Russia, from 23 to 25 June 2004, Springer Science & Business Media, 2006. https://doi.org/10.1007/1-4020-3475-X
[74] R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Boyer, A. Foucaran, Electrical properties of ZnO sputtered thin films, Microelectronics journal, 34 (2003) 1087-1092. https://doi.org/10.1016/S0026-2692(03)00198-8
[75] S. Shionoya, W.Y.P. Handbook, Phosphor Research Society, in, CRC Press, 1998.
[76] H. Nanto, H. Sokooshi, T. Usuda, Smell sensor using ZnO thin films prepared by magnetron sputtering, in: TRANSDUCERS’91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, IEEE, 1991, pp. 596-599.
[77] Ü. Özgür, X. Gu, S. Chevtchenko, J. Spradlin, S.-J. Cho, H. Morkoç, F. Pollak, H. Everitt, B. Nemeth, J. Nause, Thermal conductivity of bulk ZnO after different thermal treatments, Journal of electronic materials, 35 (2006) 550-555. https://doi.org/10.1007/s11664-006-0098-9
[78] Z.L. Wang, ZnO nanostructures: growth, properties and applications, Journal of physics: condensed matter, 16 (2004) R829. https://doi.org/10.1088/0953-8984/16/25/R01
[79] S.A. Kumar, S.M. Chen, Nanostructured ZnO particles in chemically modified electrodes for biosensor applications, Analytical Letters, 41 (2008) 141-158. https://doi.org/10.1080/00032710701792612