ZnO Hybrid Nanostructures for Solar Cell Applications

$30.00

ZnO Hybrid Nanostructures for Solar Cell Applications

Naveen Kumar, Nupur Aggarwal, Payal Patial, Navdeep Sharma, Anu Kapoor, Ranvir Singh Panwar

ZnO, Perovskite Solar Cell, Dye-Sensitized Solar Cell, Hetro-Junction Solar Cell

Keywords
ZnO, Perovskite Solar Cell, Dye-Sensitized Solar Cell, Hetro-Junction Solar Cell

Published online , 41 pages

Citation: Naveen Kumar, Nupur Aggarwal, Payal Patial, Navdeep Sharma, Anu Kapoor, Ranvir Singh Panwar, ZnO Hybrid Nanostructures for Solar Cell Applications, Materials Research Foundations, Vol. 146, pp 132-172, 2023

DOI: https://doi.org/10.21741/9781644902394-5

Part of the book on ZnO and Their Hybrid Nano-Structures

References
[1] Satpute Anand Vijay and E. Vijay Kumar. Modern development and potential uses of solar energy utilization in India: A review. WEENTECH Proc. Energy 6 (2020): 1-13. https://doi.org/10.32438/WPE.060203
[2] Kafafi Zakya H. Barry P. Rand Kwanghee Lee and René Janssen. Introduction to the issue on next-generation organic and hybrid solar cells. IEEE Journal of Selected Topics in Quantum Electronics 16 no. 6 (2010): 1512-1513. https://doi.org/10.1109/JSTQE.2010.2077690
[3] Irfan Ahmad Ruifa Jin Abdullah G. Al-Sehemi and Abdullah M. Asiri. Quantum chemical study of the donor-bridge-acceptor triphenylamine based sensitizers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 110 (2013): 60-66. https://doi.org/10.1016/j.saa.2013.02.045
[4] McEvoy Augustin Luis Castaner and Tom Markvart. Solar cells: materials manufacture and operation. Academic Press 2012.
[5] Chander A. Hema M. Krishna and Y. Srikanth. Comparision of different types of Solar cells-a review. IOSR Journal of Electrical Engineering 10 no. 6 (2015): 151-154.
[6] O’regan B. & Grätzel M. (1991). A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature 353(6346) 737-740. https://doi.org/10.1038/353737a0
[7] Zhang Xinyu Jiaqian Qin Yanan Xue Pengfei Yu Bing Zhang Limin Wang and Riping Liu. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific reports 4 no. 1 (2014): 1-8. https://doi.org/10.1038/srep04596
[8] Look David C. Donald C. Reynolds J. R. Sizelove R. L. Jones Cole W. Litton G. Cantwell and W. C. Harsch. Electrical properties of bulk ZnO. Solid state communications 105 no. 6 (1998): 399-401. https://doi.org/10.1016/S0038-1098(97)10145-4
[9] Albrecht J. D. P. P. Ruden Sukit Limpijumnong W. R. L. Lambrecht and K. F. Brennan. High field electron transport properties of bulk ZnO. Journal of Applied Physics 86 no. 12 (1999): 6864-6867. [9] https://doi.org/10.1063/1.371764
[10] Noack Volker Horst Weller and Alexander Eychmüller. Electron transport in particulate ZnO electrodes: a simple approach. The Journal of Physical Chemistry B 106 no. 34 (2002): 8514-8523. https://doi.org/10.1021/jp0200270
[11] Sobczyk-Guzenda Anna Bożena Pietrzyk Hieronim Szymanowski Maciej Gazicki-Lipman and Witold Jakubowski. Photocatalytic activity of thin TiO2 films deposited using sol-gel and plasma enhanced chemical vapor deposition methods. Ceramics International 39 no. 3 (2013): 2787-2794. https://doi.org/10.1016/j.ceramint.2012.09.046
[12] Anand Vikky and Vimal Chandra Srivastava. Zinc oxide nanoparticles synthesis by electrochemical method: Optimization of parameters for maximization of productivity and characterization. Journal of Alloys and Compounds 636 (2015): 288-292. https://doi.org/10.1016/j.jallcom.2015.02.189
[13] Ghosh Saptarshi Deblina Majumder Amarnath Sen and Somenath Roy. Facile sonochemical synthesis of zinc oxide nanoflakes at room temperature. Materials Letters 130 (2014): 215-217. https://doi.org/10.1016/j.matlet.2014.05.112
[14] Kumar V. R. P. R. S. Wariar V. S. Prasad and J. Koshy. A novel approach for the synthesis of nanocrystalline zinc oxide powders by room temperature co-precipitation method. Materials Letters 65 no. 13 (2011): 2059-2061. https://doi.org/10.1016/j.matlet.2011.04.015
[15] Lim Sang Kyoo Sung-Ho Hwang Soonhyun Kim and Hyunwoong Park. Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sensors and Actuators B: Chemical 160 no. 1 (2011): 94-98. https://doi.org/10.1016/j.snb.2011.07.018
[16] Ba-Abbad Muneer M. Abdul Amir H. Kadhum Abu Bakar Mohamad Mohd S. Takriff and Kamaruzzaman Sopian. Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol-gel technique. Journal of Industrial and Engineering Chemistry 19 no. 1 (2013): 99-105. https://doi.org/10.1016/j.jiec.2012.07.010
[17] Hasanpoor Meisam M. Aliofkhazraei and H. Delavari. Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Materials Science 11 (2015): 320-325. https://doi.org/10.1016/j.mspro.2015.11.101
[18] Šarić Ankica Goran Štefanić Goran Dražić and Marijan Gotić. Solvothermal synthesis of zinc oxide microspheres. Journal of Alloys and Compounds 652 (2015): 91-99. https://doi.org/10.1016/j.jallcom.2015.08.200
[19] Laurenti M. N. Garino S. Porro M. Fontana and C. Gerbaldi. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. Journal of Alloys and Compounds 640 (2015): 321-326. https://doi.org/10.1016/j.jallcom.2015.03.222
[20] Samanta Pijus Kanti and Santanu Mishra. Wet chemical growth and optical property of ZnO nanodiscs. Optik-International Journal for Light and Electron Optics 124 no. 17 (2013): 2871-2873. https://doi.org/10.1016/j.ijleo.2012.08.066
[21] Ivetić T. B. M. R. Dimitrievska N. L. Finčur Lj R. Đačanin I. O. Gúth B. F. Abramović and S. R. Lukić-Petrović. Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceramics International 40 no. 1 (2014): 1545-1552. https://doi.org/10.1016/j.ceramint.2013.07.041
[22] Wang Yajun Xiaoru Zhao Libing Duan Fenggui Wang Hongru Niu Wenrui Guo and Amjed Ali. Structure luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method. Materials Science in Semiconductor Processing 29 (2015): 372-379. https://doi.org/10.1016/j.mssp.2014.07.034
[23] Selvam N. Clament Sagaya S. Narayanan L. John Kennedy and J. Judith Vijaya. Pure and Mg-doped self-assembled ZnO nano-particles for the enhanced photocatalytic degradation of 4-chlorophenol. Journal of environmental sciences 25 no. 10 (2013): 2157-2167. https://doi.org/10.1016/S1001-0742(12)60277-0
[24] Patil Ashokrao B. Kashinath R. Patil and Satish K. Pardeshi. Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. Journal of Hazardous Materials 183 no. 1-3 (2010): 315-323. https://doi.org/10.1016/j.jhazmat.2010.07.026
[25] Bechambi Olfa Sami Sayadi and Wahiba Najjar. Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism. Journal of Industrial and Engineering Chemistry 32 (2015): 201-210. https://doi.org/10.1016/j.jiec.2015.08.017
[26] Haibo Ouyang Huang Jian Feng Li Cuiyan Cao Liyun and Fei Jie. Synthesis of carbon doped ZnO with a porous structure and its solar-light photocatalytic properties. Materials Letters 111 (2013): 217-220. https://doi.org/10.1016/j.matlet.2013.08.081
[27] Wu Changle. Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation. Applied surface science 319 (2014): 237-243. https://doi.org/10.1016/j.apsusc.2014.04.217
[28] Rajbongshi Biju Mani Anjalu Ramchiary and S. K. Samdarshi. Influence of N-doping on photocatalytic activity of ZnO nanoparticles under visible light irradiation. Materials Letters 134 (2014): 111-114. https://doi.org/10.1016/j.matlet.2014.07.073
[29] Gu Pengfei Xudong Wang Tao Li and Huimin Meng. Investigation of defects in N-doped ZnO powders prepared by a facile solvothermal method and their UV photocatalytic properties. Materials Research Bulletin 48 no. 11 (2013): 4699-4703. https://doi.org/10.1016/j.materresbull.2013.08.034
[30] Yu Zongbao Li-Chang Yin Yingpeng Xie Gang Liu Xiuliang Ma and Hui-Ming Cheng. Crystallinity-dependent substitutional nitrogen doping in ZnO and its improved visible light photocatalytic activity. Journal of colloid and interface science 400 (2013): 18-23. https://doi.org/10.1016/j.jcis.2013.02.046
[31] Kaneva Nina V. Dimitre T. Dimitrov and Ceco D. Dushkin. Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light. Applied Surface Science 257 no. 18 (2011): 8113-8120. https://doi.org/10.1016/j.apsusc.2011.04.119
[32] Jia Xiaohua Huiqing Fan Mohammad Afzaal Xiangyang Wu and Paul O’Brien. Solid state synthesis of tin-doped ZnO at room temperature: characterization and its enhanced gas sensing and photocatalytic properties. Journal of hazardous materials 193 (2011): 194-199. https://doi.org/10.1016/j.jhazmat.2011.07.049
[33] Su C. Y. C. T. Lu W. T. Hsiao W. H. Liu and F. S. Shieu. Evaluation of the microstructural and photocatalytic properties of aluminum-doped zinc oxide coatings deposited by plasma spraying. Thin Solid Films 544 (2013): 170-174. https://doi.org/10.1016/j.tsf.2013.03.129
[34] bo Zhong Jun Jian zhang Li Yan Lu Xi yang He Jun Zeng Wei Hu and Yue cheng Shen. Fabrication of Bi3+-doped ZnO with enhanced photocatalytic performance. Applied Surface Science 258 no. 11 (2012): 4929-4933. https://doi.org/10.1016/j.apsusc.2012.01.121
[35] Ahmad M. E. Ahmed Z. L. Hong Z. Iqbal N. R. Khalid T. Abbas Imran Ahmad A. M. Elhissi and W. Ahmed. Structural optical and photocatalytic properties of hafnium doped zinc oxide nanophotocatalyst. Ceramics International 39 no. 8 (2013): 8693-8700. https://doi.org/10.1016/j.ceramint.2013.04.051
[36] Sanoop P. K. S. Anas S. Ananthakumar V. Gunasekar R. Saravanan and V. Ponnusami. Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation. Arabian Journal of chemistry 9 (2016): S1618-S1626. https://doi.org/10.1016/j.arabjc.2012.04.023
[37] Zhong Jun Jian zhang Li Xi yang He Jun Zeng Yan Lu Wei Hu and Kun Lin. Improved photocatalytic performance of Pd-doped ZnO. Current Applied Physics 12 no. 3 (2012): 998-1001. https://doi.org/10.1016/j.cap.2012.01.003
[38] Khalil A. M. A. Gondal and M. A. Dastageer. Augmented photocatalytic activity of palladium incorporated ZnO nanoparticles in the disinfection of Escherichia coli microorganism from water. Applied Catalysis A: General 402 no. 1-2 (2011): 162-167. https://doi.org/10.1016/j.apcata.2011.05.041
[39] Divband B. M. Khatamian GR Kazemi Eslamian and M. Darbandi. Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation. Applied surface science 284 (2013): 80-86. https://doi.org/10.1016/j.apsusc.2013.07.015
[40] Shinde S. S. C. H. Bhosale and K. Y. Rajpure. Oxidative degradation of acid orange 7 using Ag-doped zinc oxide thin films. Journal of Photochemistry and Photobiology B: Biology 117 (2012): 262-268. https://doi.org/10.1016/j.jphotobiol.2012.10.011
[41] Whang Thou-Jen Mu-Tao Hsieh and Huang-Han Chen. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Applied Surface Science 258 no. 7 (2012): 2796-2801. https://doi.org/10.1016/j.apsusc.2011.10.134
[42] Ba-Abbad Muneer M. Abdul Amir H. Kadhum Abu Bakar Mohamad Mohd S. Takriff and Kamaruzzaman Sopian. Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol-gel technique. Chemosphere 91 no. 11 (2013): 1604-1611. https://doi.org/10.1016/j.chemosphere.2012.12.055
[43] Rekha K. M. Nirmala Manjula G. Nair and A. Anukaliani. Structural optical photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B: Condensed Matter 405 no. 15 (2010): 3180-3185. https://doi.org/10.1016/j.physb.2010.04.042
[44] Ullah Ruh and Joydeep Dutta. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous materials 156 no. 1-3 (2008): 194-200. https://doi.org/10.1016/j.jhazmat.2007.12.033
[45] Ullah Ruh and Joydeep Dutta. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous materials 156 no. 1-3 (2008): 194-200. https://doi.org/10.1016/j.jhazmat.2007.12.033
[46] Mahmood Mohammad Abbas Sunandan Baruah and Joydeep Dutta. Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Materials Chemistry and Physics 130 no. 1-2 (2011): 531-535. https://doi.org/10.1016/j.matchemphys.2011.07.018
[47] Thennarasu G. and A. Sivasamy. Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant. Ecotoxicology and Environmental Safety 134 (2016): 412-420. https://doi.org/10.1016/j.ecoenv.2015.10.030
[48] Mittal Manish Manoj Sharma and O. P. Pandey. UV-Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Solar Energy 110 (2014): 386-397. https://doi.org/10.1016/j.solener.2014.09.026
[49] Mohan Rajneesh Karthikeyan Krishnamoorthy and Sang-Jae Kim. Enhanced photocatalytic activity of Cu-doped ZnO nanorods. Solid State Communications 152 no. 5 (2012): 375-380. https://doi.org/10.1016/j.ssc.2011.12.008
[50] Jongnavakit P. P. Amornpitoksuk S. Suwanboon and N. J. A. S. S. Ndiege. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method. Applied Surface Science 258 no. 20 (2012): 8192-8198. https://doi.org/10.1016/j.apsusc.2012.05.021
[51] Fu Min Yalin Li Peng Lu Jing Liu and Fan Dong. Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Applied Surface Science 258 no. 4 (2011): 1587-1591. https://doi.org/10.1016/j.apsusc.2011.10.003
[52] He Rongliang Rosalie K. Hocking and Takuya Tsuzuki. Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Materials Chemistry and Physics 132 no. 2-3 (2012): 1035-1040. https://doi.org/10.1016/j.matchemphys.2011.12.061
[53] Yayapao Oranuch Somchai Thongtem Anukorn Phuruangrat and Titipun Thongtem. Sonochemical synthesis photocatalysis and photonic properties of 3% Ce-doped ZnO nanoneedles. Ceramics International 39 (2013): S563-S568. https://doi.org/10.1016/j.ceramint.2012.10.136
[54] Rezaei M. and A. Habibi-Yangjeh. Simple and large scale refluxing method for preparation of Ce-doped ZnO nanostructures as highly efficient photocatalyst. Applied surface science 265 (2013): 591-596. https://doi.org/10.1016/j.apsusc.2012.11.053
[55] Faisal M. Adel A. Ismail Ahmed A. Ibrahim Houcine Bouzid and Saleh A. Al-Sayari. Highly efficient photocatalyst based on Ce doped ZnO nanorods: Controllable synthesis and enhanced photocatalytic activity. Chemical engineering journal 229 (2013): 225-233. https://doi.org/10.1016/j.cej.2013.06.004
[56] Karunakaran Chockalingam Paramasivan Gomathisankar and Govindasamy Manikandan. Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Materials Chemistry and Physics 123 no. 2-3 (2010): 585-594. https://doi.org/10.1016/j.matchemphys.2010.05.019
[57] Khataee Alireza Reza Darvishi Cheshmeh Soltani Atefeh Karimi and Sang Woo Joo. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrasonics Sonochemistry 23 (2015): 219-230. https://doi.org/10.1016/j.ultsonch.2014.08.023
[58] Zong Yanqing Zhe Li Xingmin Wang Jiantao Ma and Yi Men. Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceramics international 40 no. 7 (2014): 10375-10382. https://doi.org/10.1016/j.ceramint.2014.02.123
[59] Yayapao Oranuch Titipun Thongtem Anukorn Phuruangrat and Somchai Thongtem. Ultrasonic-assisted synthesis of Nd-doped ZnO for photocatalysis. Materials Letters 90 (2013): 83-86. https://doi.org/10.1016/j.matlet.2012.09.027
[60] Kumar Surender and P. D. Sahare. Nd-doped ZnO as a multifunctional nanomaterial. Journal of rare earths 30 no. 8 (2012): 761-768. https://doi.org/10.1016/S1002-0721(12)60126-4
[61] Zhen Z. H. A. O. Ji-ling Song Jia-hong Zheng and Jian-she Lian. Optical properties and photocatalytic activity of Nd-doped ZnO powders. Transactions of Nonferrous Metals Society of China 24 no. 5 (2014): 1434-1439. https://doi.org/10.1016/S1003-6326(14)63209-X
[62] Sin Jin-Chung Sze-Mun Lam Keat-Teong Lee and Abdul Rahman Mohamed. Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2 4-dichlorophenol degradation. Journal of colloid and interface science 401 (2013): 40-49. https://doi.org/10.1016/j.jcis.2013.03.043
[63] Sin Jin-Chung Sze-Mun Lam Keat-Teong Lee and Abdul Rahman Mohamed. Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods. Ceramics International 39 no. 5 (2013): 5833-5843. https://doi.org/10.1016/j.ceramint.2013.01.004
[64] Anandan S. A. Vinu KLP Sheeja Lovely N. Gokulakrishnan P. Srinivasu T. Mori V. Murugesan V. Sivamurugan and K. Ariga. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. Journal of Molecular Catalysis A: Chemical 266 no. 1-2 (2007): 149-157. https://doi.org/10.1016/j.molcata.2006.11.008
[65] Khataee Alireza Reza Darvishi Cheshmeh Soltani Atefeh Karimi and Sang Woo Joo. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrasonics Sonochemistry 23 (2015): 219-230. https://doi.org/10.1016/j.ultsonch.2014.08.023
[66] Mascolo G. R. Comparelli M. L. Curri G. Lovecchio A. Lopez and A. Agostiano. Photocatalytic degradation of methyl red by TiO2: Comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. Journal of Hazardous Materials 142 no. 1-2 (2007): 130-137. https://doi.org/10.1016/j.jhazmat.2006.07.068
[67] Hu Bing Jin Zhou and Xiu-Min Wu. Decoloring methyl orange under sunlight by a photocatalytic membrane reactor based on ZnO nanoparticles and polypropylene macroporous membrane. International Journal of Polymer Science 2013 (2013). https://doi.org/10.1155/2013/451398
[68] Brezova V. M. Jankovičová M. Soldan A. Blažková M. Rehakova I. Šurina M. Čeppan and B. Havlinova. Photocatalytic degradation of p-toluenesulphonic acid in aqueous systems containing powdered and immobilized titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry 83 no. 1 (1994): 69-75. https://doi.org/10.1016/1010-6030(94)03804-X
[69] Dijkstra M. F. J. A. Michorius H. Buwalda H. J. Panneman J. G. M. Winkelman and A. A. C. M. Beenackers. Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation. Catalysis Today 66 no. 2-4 (2001): 487-494. https://doi.org/10.1016/S0920-5861(01)00257-7
[70] Mozia Sylwia. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and purification technology 73 no. 2 (2010): 71-91. https://doi.org/10.1016/j.seppur.2010.03.021
[71] Mansilla H. D. C. Bravo R. Ferreyra M. I. Litter W. F. Jardim C. Lizama J. Freer and J. Fernandez. Photocatalytic EDTA degradation on suspended and immobilized TiO2. Journal of Photochemistry and Photobiology A: Chemistry 181 no. 2-3 (2006): 188-194. https://doi.org/10.1016/j.jphotochem.2005.11.023
[72] González Verónica Israel López Raul Martín Palma Yolanda Peña and Idalia Gómez. Organic-inorganic hybrid solar cells based on 1D ZnO/P3HT active layers and 0D Au as cathode. Materials Research Express 7 no. 7 (2020): 075005. https://doi.org/10.1088/2053-1591/ab9cec
[73] Zhou Yunfei Michael Eck and Michael Krüger. Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy & Environmental Science 3 no. 12 (2010): 1851-1864. https://doi.org/10.1039/c0ee00143k
[74] Halim Mohammad A. Harnessing sun’s energy with quantum dots based next generation solar cell. Nanomaterials 3 no. 1 (2012): 22-47. https://doi.org/10.3390/nano3010022
[75] Saboor Abdus Syed Mujtaba Shah and Hazrat Hussain. Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods. Materials Science in Semiconductor Processing 93 (2019): 215-225. https://doi.org/10.1016/j.mssp.2019.01.009
[76] Maragliano C. S. Lilliu M. S. Dahlem M. Chiesa T. Souier and M. Stefancich. Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy. Scientific reports 4 no. 1 (2014): 1-7. https://doi.org/10.1038/srep04203
[77] Consonni Vincent Joe Briscoe Erki Kärber Xuan Li and Thomas Cossuet. ZnO nanowires for solar cells: a comprehensive review. Nanotechnology 30 no. 36 (2019): 362001. https://doi.org/10.1088/1361-6528/ab1f2e
[78] Gonzalez-Valls Irene and Monica Lira-Cantu. Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy & Environmental Science 2 no. 1 (2009): 19-34. https://doi.org/10.1039/B811536B
[79] Hames Yakup Zühal Alpaslan Arif Kösemen Sait Eren San and Yusuf Yerli. Electrochemically grown ZnO nanorods for hybrid solar cell applications. Solar Energy 84 no. 3 (2010): 426-431. https://doi.org/10.1016/j.solener.2009.12.013
[80] Qi Juanjuan Junwei Chen Weili Meng Xiaoyan Wu Changwen Liu Wenjin Yue and Mingtai Wang. Recent advances in hybrid solar cells based on metal oxide nanostructures. Synthetic Metals 222 (2016): 42-65. https://doi.org/10.1016/j.synthmet.2016.04.027
[81] Beek Waldo JE Martijn M. Wienk and Rene AJ Janssen. Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials 16 no. 12 (2004): 1009-1013. https://doi.org/10.1002/adma.200306659
[82] Wang Huan Guobin Yi Xihong Zu Pei Qin Miao Tan and Hongsheng Luo. Photoelectric characteristics of the p-n junction between ZnO nanorods and polyaniline nanowires and their application as a UV photodetector. Materials Letters 162 (2016): 83-86. https://doi.org/10.1016/j.matlet.2015.09.128
[83] Greene Lori E. Matt Law Benjamin D. Yuhas and Peidong Yang. ZnO− TiO2 core− shell nanorod/P3HT solar cells. The Journal of Physical Chemistry C 111 no. 50 (2007): 18451-18456. https://doi.org/10.1021/jp077593l
[84] Oosterhout Stefan D. Martijn M. Wienk Svetlana S. Van Bavel Ralf Thiedmann L. Jan Anton Koster Jan Gilot Joachim Loos Volker Schmidt and René AJ Janssen. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nature materials 8 no. 10 (2009): 818-824. https://doi.org/10.1038/nmat2533
[85] Li Shao-Sian and Chun-Wei Chen. Polymer-metal-oxide hybrid solar cells. Journal of Materials Chemistry A 1 no. 36 (2013): 10574-10591. https://doi.org/10.1039/c3ta11998j
[86] Helgesen Martin Roar Søndergaard and Frederik C. Krebs. Advanced materials and processes for polymer solar cell devices. Journal of Materials Chemistry 20 no. 1 (2010): 36-60. https://doi.org/10.1039/B913168J
[87] Beek Waldo JE Martijn M. Wienk Martijn Kemerink Xiaoniu Yang and René AJ Janssen. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. The Journal of Physical Chemistry B 109 no. 19 (2005): 9505-9516. https://doi.org/10.1021/jp050745x
[88] Zhou Yunfei Michael Eck and Michael Krüger. Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy & Environmental Science 3 no. 12 (2010): 1851-1864. https://doi.org/10.1039/c0ee00143k
[89] Ravirajan Punniamoorthy Ana M. Peiró Mohammad K. Nazeeruddin Michael Graetzel Donal DC Bradley James R. Durrant and Jenny Nelson. Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. The Journal of Physical Chemistry B 110 no. 15 (2006): 7635-7639. https://doi.org/10.1021/jp0571372
[90] Gonzalez-Valls Irene and Monica Lira-Cantu. Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy & Environmental Science 2 no. 1 (2009): 19-34. https://doi.org/10.1039/B811536B
[91] Jung Seungon Junghyun Lee Jihyung Seo Ungsoo Kim Yunseong Choi and Hyesung Park. Development of annealing-free solution-processable inverted organic solar cells with N-doped graphene electrodes using zinc oxide nanoparticles. Nano letters 18 no. 2 (2018): 1337-1343. https://doi.org/10.1021/acs.nanolett.7b05026
[92] Olson Dana C. Jorge Piris Reuben T. Collins Sean E. Shaheen and David S. Ginley. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin solid films 496 no. 1 (2006): 26-29. https://doi.org/10.1016/j.tsf.2005.08.179
[93] Olson Dana C. Yun-Ju Lee Matthew S. White Nikos Kopidakis Sean E. Shaheen David S. Ginley James A. Voigt and Julia WP Hsu. Effect of ZnO processing on the photovoltage of ZnO/poly (3-hexylthiophene) solar cells. The Journal of Physical Chemistry C 112 no. 26 (2008): 9544-9547. https://doi.org/10.1021/jp802626u
[94] Baeten Linny Bert Conings Hans‐Gerd Boyen Jan D’Haen An Hardy Marc D’Olieslaeger Jean V. Manca and Marlies K. Van Bael. Towards efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays. Advanced Materials 23 no. 25 (2011): 2802-2805. https://doi.org/10.1002/adma.201100414
[95] Han Jianhua Zhifeng Liu Xuerong Zheng Keying Guo Xueqi Zhang Tiantian Hong Bo Wang and Junqi Liu. Trilaminar ZnO/ZnS/Sb 2 S 3 nanotube arrays for efficient inorganic-organic hybrid solar cells. Rsc Advances 4 no. 45 (2014): 23807-23814. https://doi.org/10.1039/c4ra02554g
[96] Alshanableh Abdelelah Sin Tee Tan Chi Chin Yap Hock Beng Lee Hind Fadhil Oleiwi Kai Jeat Hong Mohd Hafizuddin Hj Jumali and Muhammad Yahaya. Surface engineering of ZnO nanorod for inverted organic solar cell. Materials Science and Engineering: B 238 (2018): 136-141. https://doi.org/10.1016/j.mseb.2018.12.024
[97] Huang Jia Zhigang Yin and Qingdong Zheng. Applications of ZnO in organic and hybrid solar cells. Energy & Environmental Science 4 no. 10 (2011): 3861-3877. https://doi.org/10.1039/c1ee01873f
[98] Zhang Rong Chengbin Fei Bo Li Haoyu Fu Jianjun Tian and Guozhong Cao. Continuous size tuning of monodispersed ZnO nanoparticles and its size effect on the performance of perovskite solar cells. ACS Applied Materials & Interfaces 9 no. 11 (2017): 9785-9794. https://doi.org/10.1021/acsami.7b00726
[99] Zhang Huiyin Jiangjian Shi Xin Xu Lifeng Zhu Yanhong Luo Dongmei Li and Qingbo Meng. Mg-doped TiO 2 boosts the efficiency of planar perovskite solar cells to exceed 19%. Journal of Materials Chemistry A 4 no. 40 (2016): 15383-15389. https://doi.org/10.1039/C6TA06879K
[100] Fan Sheng-Qiang Baizeng Fang Jung Ho Kim Jeum-Jong Kim Jong-Sung Yu and Jaejung Ko. Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. Applied Physics Letters 96 no. 6 (2010): 063501. https://doi.org/10.1063/1.3313948
[101] Zheng Yan-Zhen Er-Fei Zhao Fan-Li Meng Xue-Sen Lai Xue-Mei Dong Jiao-Jiao Wu and Xia Tao. Iodine-doped ZnO nanopillar arrays for perovskite solar cells with high efficiency up to 18.24%. Journal of Materials Chemistry A 5 no. 24 (2017): 12416-12425. https://doi.org/10.1039/C7TA03150E
[102] Loh Leonard and Steve Dunn. Recent progress in ZnO-based nanostructured ceramics in solar cell applications. Journal of nanoscience and nanotechnology 12 no. 11 (2012): 8215-8230. https://doi.org/10.1166/jnn.2012.6680
[103] Miskin Caleb K. Swapnil D. Deshmukh Venkata Vasiraju Kevin Bock Gaurav Mittal Angela Dubois-Camacho Sreeram Vaddiraju and Rakesh Agrawal. Lead chalcogenide nanoparticles and their size-controlled self-assemblies for thermoelectric and photovoltaic applications. ACS Applied Nano Materials 2 no. 3 (2019): 1242-1252. https://doi.org/10.1021/acsanm.8b02125
[104] Leschkies Kurtis S. Timothy J. Beatty Moon Sung Kang David J. Norris and Eray S. Aydil. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS nano 3 no. 11 (2009): 3638-3648. https://doi.org/10.1021/nn901139d
[105] Bhaumik Anagh A. Haque P. Karnati M. F. N. Taufique R. Patel and Kartik Ghosh. Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 572 (2014): 126-133. https://doi.org/10.1016/j.tsf.2014.09.056
[106] Fujimoto Kazuya Takeo Oku Tsuyoshi Akiyama and Atsushi Suzuki. Fabrication and characterization of copper oxide-zinc oxide solar cells prepared by electrodeposition. In Journal of Physics: Conference Series vol. 433 no. 1 p. 012024. IOP Publishing 2013. https://doi.org/10.1088/1742-6596/433/1/012024
[107] Guillén Elena Eneko Azaceta Laurence M. Peter Arnost Zukal Ramón Tena-Zaera and Juan A. Anta. ZnO solar cells with an indoline sensitizer: a comparison between nanoparticulate films and electrodeposited nanowire arrays. Energy & Environmental Science 4 no. 9 (2011): 3400-3407. https://doi.org/10.1039/c0ee00500b
[108] Kumari J. M. K. W. N. Sanjeevadharshini M. A. K. L. Dissanayake G. K. R. Senadeera and C. A. Thotawatthage. The effect of TiO2 photo anode film thickness on photovoltaic properties of dye-sensitized solar cells. Ceylon Journal of Science 45 no. 1 (2016). https://doi.org/10.4038/cjs.v45i1.7362
[109] Wang Lijing Hongju Zhai Gan Jin Xiaoying Li Chunwei Dong Hao Zhang Bai Yang Haiming Xie and Haizhu Sun. 3D porous ZnO-SnS p-n heterojunction for visible light driven photocatalysis. Physical Chemistry Chemical Physics 19 no. 25 (2017): 16576-16585. https://doi.org/10.1039/C7CP01687E
[110] Peksu Elif and Hakan Karaagac. Synthesis of ZnO nanowires and their photovoltaic application: znO nanowires/AgGaSe2 thin film core-shell solar cell. Journal of Nanomaterials 2015 (2015). https://doi.org/10.1155/2015/516012
[111] Irfan Ahmad. First principle investigations to enhance the charge transfer properties by bridge elongation. Journal of Theoretical and Computational Chemistry 13 no. 02 (2014): 1450013. https://doi.org/10.1142/S0219633614500138
[112] Nozik Arthur J. Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures 14 no. 1-2 (2002): 115-120. https://doi.org/10.1016/S1386-9477(02)00374-0
[113] Schaller Richard D. and Victor I. Klimov. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical review letters 92 no. 18 (2004): 186601. https://doi.org/10.1103/PhysRevLett.92.186601
[114] Robel István Vaidyanathan Subramanian Masaru Kuno and Prashant V. Kamat. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society 128 no. 7 (2006): 2385-2393. https://doi.org/10.1021/ja056494n
[115] Fan Sheng-Qiang Baizeng Fang Jung Ho Kim Jeum-Jong Kim Jong-Sung Yu and Jaejung Ko. Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. Applied Physics Letters 96 no. 6 (2010): 063501. https://doi.org/10.1063/1.3313948
[116] Diguna Lina J. Motonobu Murakami Akira Sato Yuki Kumagai Taishi Ishihara Naoki Kobayashi Qing Shen and Taro Toyoda. Photoacoustic and photoelectrochemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots. Japanese journal of applied physics 45 no. 6S (2006): 5563. https://doi.org/10.1143/JJAP.45.5563
[117] Matsumura Michio Shigeyuki Matsudaira Hiroshi Tsubomura Masasuke Takata and Hiroaki Yanagida. Dye sensitization and surface structures of semiconductor electrodes. Industrial & Engineering Chemistry Product Research and Development 19 no. 3 (1980): 415-421. https://doi.org/10.1021/i360075a025
[118] Xie Xueping Jinfeng Liao Xiaoru Shao Qianshun Li and Yunfeng Lin. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars rods and triangles. Scientific reports 7 no. 1 (2017): 1-9. https://doi.org/10.1038/s41598-017-04229-z
[119] Rensmo Håkan Karin Keis Henrik Lindström Sven Södergren Anita Solbrand Anders Hagfeldt S-E. Lindquist L. N. Wang and M. Muhammed. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. The Journal of Physical Chemistry B 101 no. 14 (1997): 2598-2601. https://doi.org/10.1021/jp962918b
[120] Horiuchi Hiroaki Ryuzi Katoh Kohjiro Hara Masatoshi Yanagida Shigeo Murata Hironori Arakawa and M. Tachiya. Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3− Zn2+) aggregate formation. The Journal of Physical Chemistry B 107 no. 11 (2003): 2570-2574. https://doi.org/10.1021/jp0220027
[121] Hara Kohjiro Takaro Horiguchi Tohru Kinoshita Kazuhiro Sayama Hideki Sugihara and Hironori Arakawa. Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar energy materials and solar cells 64 no. 2 (2000): 115-134. https://doi.org/10.1016/S0927-0248(00)00065-9
[122] Keis Karin Jan Lindgren Sten-Eric Lindquist and Anders Hagfeldt. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16 no. 10 (2000): 4688-4694. https://doi.org/10.1021/la9912702
[123] Parks George A. The isoelectric points of solid oxides solid hydroxides and aqueous hydroxo complex systems. Chemical Reviews 65 no. 2 (1965): 177-198. https://doi.org/10.1021/cr60234a002
[124] Keis Karin C. Bauer Gerrit Boschloo Anders Hagfeldt K. Westermark Håkan Rensmo and Hans Siegbahn. Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and photobiology A: Chemistry 148 no. 1-3 (2002): 57-64. https://doi.org/10.1016/S1010-6030(02)00039-4
[125] Keis K. C. Bauer G. Boschloo and A. Hagfeldt. K. westermark H. Rensmo H. Siegbahn. J. Photochem. Photobiol. A 148 (2002): 57. https://doi.org/10.1016/S1010-6030(02)00039-4
[126] Law M. L. E. Greene and J. C. Johnson. R. saykally PD Yang. Nat. Mater 4 (2005): 455. https://doi.org/10.1038/nmat1387
[127] Zhao Qidong Tengfeng Xie Linlin Peng Yanhong Lin Ping Wang Liang Peng and Dejun Wang. Size-and orientation-dependent photovoltaic properties of ZnO nanorods. The Journal of Physical Chemistry C 111 no. 45 (2007): 17136-17145. https://doi.org/10.1021/jp075368y
[128] Chen Z. H. Y. B. Tang C. P. Liu Y. H. Leung G. D. Yuan L. M. Chen Y. Q. Wang et al. Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. The Journal of Physical Chemistry C 113 no. 30 (2009): 13433-13437. https://doi.org/10.1021/jp903153w
[129] Yun Sining Juneyoung Lee Jooyoung Chung and Sangwoo Lim. Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping. Journal of Physics and Chemistry of Solids 71 no. 12 (2010): 1724-1731 https://doi.org/10.1016/j.jpcs.2010.08.020
[130] Lee Chuan-Pei Chen-Yu Chou Chia-Yuan Chen Min-Hsin Yeh Lu-Yin Lin R. Vittal Chun-Guey Wu and Kuo-Chuan Ho. Zinc oxide-based dye-sensitized solar cells with a ruthenium dye containing an alkyl bithiophene group. Journal of Power Sources 246 (2014): 1-9. https://doi.org/10.1016/j.jpowsour.2013.05.101
[131] Martinson Alex BF James E. McGarrah Mohammed OK Parpia and Joseph T. Hupp. Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells. Physical Chemistry Chemical Physics 8 no. 40 (2006): 4655-4659. https://doi.org/10.1039/b610566a
[132] Akhtar M. Shaheer M. Alam Khan Myung Seok Jeon and O-Bong Yang. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochimica Acta 53 no. 27 (2008): 7869-7874. https://doi.org/10.1016/j.electacta.2008.05.055
[133] Kong Xiang Yang Yong Ding Rusen Yang and Zhong Lin Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303 no. 5662 (2004): 1348-1351. https://doi.org/10.1126/science.1092356
[134] Mou Jixia Weiguang Zhang Jun Fan Hong Deng and Wei Chen. Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells. Journal of alloys and compounds 509 no. 3 (2011): 961-965. https://doi.org/10.1016/j.jallcom.2010.09.148
[135] Abd-Ellah Marwa Nafiseh Moghimi Lei Zhang Nina F. Heinig Liyan Zhao Joseph P. Thomas and K. T. Leung. Effect of electrolyte conductivity on controlled electrochemical synthesis of zinc oxide nanotubes and nanorods. The Journal of Physical Chemistry C 117 no. 13 (2013): 6794-6799. https://doi.org/10.1021/jp312321t
[136] Jiang C. Y. X. W. Sun G. Q. Lo D. L. Kwong and J. X. Wang. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters 90 no. 26 (2007): 263501. https://doi.org/10.1063/1.2751588
[137] Lin Chia-Yu Yi-Hsuan Lai Hsin-Wei Chen Jian-Ging Chen Chung-Wei Kung L. R. Vittal and Kuo-Chuan Ho. Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy & Environmental Science 4 no. 9 (2011): 3448-3455. https://doi.org/10.1039/c0ee00587h
[138] Ameen Sadia M. Shaheer Akhtar and Hyung Shik Shin. Growth and characterization of nanospikes decorated ZnO sheets and their solar cell application. Chemical engineering journal 195 (2012): 307-313. https://doi.org/10.1016/j.cej.2012.04.081
[139] Lupan Oleg Victoire Marie Guerin Lidia Ghimpu I. M. Tiginyanu and Thierry Pauporté. Nanofibrous-like ZnO layers deposited by magnetron sputtering and their integration in dye-sensitized solar cells. Chemical Physics Letters 550 (2012): 125-129. https://doi.org/10.1016/j.cplett.2012.08.071
[140] Kim Il-Doo Jae-Min Hong Byong Hong Lee Dong Young Kim Eun-Kyung Jeon Duck-Kyun Choi and Dae-Jin Yang. Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats. Applied Physics Letters 91 no. 16 (2007): 163109. https://doi.org/10.1063/1.2799581
[141] Chang Jin Rasin Ahmed Hongxia Wang Hongwei Liu Renzhi Li Peng Wang and Eric R. Waclawik. ZnO nanocones with high-index {101̅1} facets for enhanced energy conversion efficiency of dye-sensitized solar cells. The Journal of Physical Chemistry C 117 no. 27 (2013): 13836-13844. https://doi.org/10.1021/jp402742n
[142] Chang Wei-Chen Lu-Yin Lin and Wan-Chin Yu. Bifunctional zinc oxide nanoburger aggregates as the dye-adsorption and light-scattering layer for dye-sensitized solar cells. Electrochimica Acta 169 (2015): 456-461. https://doi.org/10.1016/j.electacta.2015.04.056
[143] Wang Feifei Ruibin Liu Anlian Pan Sishen Xie and Bingsuo Zou. A simple and cheap way to produce porous ZnO ribbons and their photovoltaic response. Materials Letters 61 no. 23-24 (2007): 4459-4462. https://doi.org/10.1016/j.matlet.2007.02.021
[144] Qu Jie Yongan Yang Qingduan Wu Paul R. Coxon Yingjun Liu Xiong He Kai Xi Ningyi Yuan and Jianning Ding. Hedgehog-like hierarchical ZnO needle-clusters with superior electron transfer kinetics for dye-sensitized solar cells. RSC Advances 4 no. 22 (2014): 11430-11437. https://doi.org/10.1039/C3RA45929B
[145] Ameen Sadia M. Shaheer Akhtar Hyung-Kee Seo Young Soon Kim and Hyung Shik Shin. Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chemical Engineering Journal 187 (2012): 351-356. https://doi.org/10.1016/j.cej.2012.01.097
[146] Bahadur Lal and Suman Kushwaha. Structural and optical properties of tripod-like ZnO thin film and its application in dye-sensitized solar cell. Journal of Solid State Electrochemistry 17 no. 7 (2013): 2001-2008. https://doi.org/10.1007/s10008-013-2053-z
[147] Thambidurai M. N. Muthukumarasamy Dhayalan Velauthapillai and Changhee Lee. Synthesis and characterization of flower like ZnO nanorods for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics 24 no. 7 (2013): 2367-2371. https://doi.org/10.1007/s10854-013-1103-8
[148] Al-Agel F. A. M. Shaheer Akhtar H. Alshammari A. Alshammari and Shamshad A. Khan. Solution processed ZnO rectangular prism as an effective photoanode material for dye sensitized solar cells. Materials Letters 147 (2015): 119-122. https://doi.org/10.1016/j.matlet.2015.02.025
[149] Lee Kun-Mu Wei-Hao Chiu Chih-Yu Hsu Hsin-Ming Cheng Chia-Hua Lee and Chun-Guey Wu. Ionic liquid diffusion properties in tetrapod-like ZnO photoanode for dye-sensitized solar cells. Journal of Power Sources 216 (2012): 330-336. https://doi.org/10.1016/j.jpowsour.2012.05.079
[150] Kozhummal Rajeevan Yang Yang Firat Güder Andreas Hartel Xiaoli Lu Umut M. Küçükbayrak Aurelio Mateo-Alonso Miko Elwenspoek and Margit Zacharias. Homoepitaxial branching: an unusual polymorph of zinc oxide derived from seeded solution growth. ACS nano 6 no. 8 (2012): 7133-7141. https://doi.org/10.1021/nn302188q
[151] Lee Chuan-Pei Jen-Chieh Lin Yi-Chun Wang Chen-Yu Chou Min-Hsin Yeh R. Vittal and Kuo-Chuan Ho. Synthesis of hexagonal ZnO clubs with opposite faces of unequal dimensions for the photoanode of dye-sensitized solar cells. Physical Chemistry Chemical Physics 13 no. 47 (2011): 20999-21008. https://doi.org/10.1039/c1cp21762c
[152] Zhou Yi Ce Liu Mengyao Li Hongyan Wu Xian Zhong Dang Li and Difa Xu. Fabrication and optical properties of ordered sea urchin-like ZnO nanostructures by a simple hydrothermal process. Materials Letters 106 (2013): 94-96. https://doi.org/10.1016/j.matlet.2013.04.102
[153] Qin Zi Yunhua Huang Junjie Qi Huifeng Li Jia Su and Yue Zhang. Facile synthesis and photoelectrochemical performance of the bush-like ZnO nanosheets film. Solid state sciences 14 no. 1 (2012): 155-158 https://doi.org/10.1016/j.solidstatesciences.2011.11.014
[154] Pawar R. C. J. S. Shaikh P. S. Shinde and P. S. Patil. Dye sensitized solar cells based on zinc oxide bottle brush. Materials Letters 65 no. 14 (2011): 2235-2237. https://doi.org/10.1016/j.matlet.2011.04.045
[155] McCune Mallarie Wei Zhang and Yulin Deng. High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with caterpillar-like structure. Nano letters 12 no. 7 (2012): 3656-3662. https://doi.org/10.1021/nl301407b
[156] Wang J. X. Chi Man Lawrence Wu Wing Sze Cheung L. B. Luo Z. B. He G. D. Yuan W. J. Zhang Chun Sing Lee and Shuit Tong Lee. Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells. The Journal of Physical Chemistry C 114 no. 31 (2010): 13157-13161. https://doi.org/10.1021/jp100637c
[157] Umar Ahmad. Growth of comb-like ZnO nanostructures for dye-sensitized solar cells applications. Nanoscale research letters 4 no. 9 (2009): 1004-1008. https://doi.org/10.1007/s11671-009-9353-3
[158] Hu Xiulan Yoshitake Masuda Tatsuki Ohji and Kazumi Kato. Fabrication of Blanket‐Like Assembled ZnO Nanowhiskers Using an Aqueous Solution. Journal of the American Ceramic Society 92 no. 4 (2009): 922-926. https://doi.org/10.1111/j.1551-2916.2009.03024.x
[159] Wang Yuqiao Xia Cui Yuan Zhang Xiaorui Gao and Yueming Sun. Preparation of cauliflower-like ZnO films by chemical bath deposition: photovoltaic performance and equivalent circuit of dye-sensitized solar cells. Journal of Materials Science & Technology 29 no. 2 (2013): 123-127. https://doi.org/10.1016/j.jmst.2012.12.019
[160] Shi Yantao Chao Zhu Lin Wang Wei Li Kwok Kwong Fung and Ning Wang. Asymmetric ZnO Panel‐Like Hierarchical Architectures with Highly Interconnected Pathways for Free‐Electron Transport and Photovoltaic Improvements. Chemistry-A European Journal 19 no. 1 (2013): 282-287. https://doi.org/10.1002/chem.201202527
[161] Chauhan Ratna Manish Shinde Abhinav Kumar Suresh Gosavi and Dinesh P. Amalnerkar. Hierarchical zinc oxide pomegranate and hollow sphere structures as efficient photoanodes for dye-sensitized solar cells. Microporous and Mesoporous Materials 226 (2016): 201-208. https://doi.org/10.1016/j.micromeso.2015.11.054
[162] Senthil T. S. N. Muthukumarasamy and Misook Kang. Applications of highly ordered paddle wheel like structured ZnO nanorods in dye sensitized solar cells. Materials Letters 102 (2013): 26-29. https://doi.org/10.1016/j.matlet.2013.03.097
[163] Li Z Zhou Y Xue G Yu T Liu J Zou Z. Fabrication of hierarchically assembled microspheres consisting of nanoporousZnOnanosheets for high-efficiency dye- sensitized solar cells. J Mater Chem 2012;22(29):14341-5. https://doi.org/10.1039/c2jm32823b
[164] He Chun‐Xiu Bing‐Xin Lei Yu‐Fen Wang Cheng‐Yong Su Yue‐Ping Fang and Dai‐Bin Kuang. Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye‐sensitized solar cells. Chemistry-A European Journal 16 no. 29 (2010): 8757-8761. https://doi.org/10.1002/chem.201000264
[165] Lamberti A. A. Sacco M. Laurenti M. Fontana C. F. Pirri and S. Bianco. Sponge-like ZnO nanostructures by low temperature water vapor-oxidation method as dye-sensitized solar cell photoanodes. Journal of alloys and compounds 615 (2014): S487-S490 https://doi.org/10.1016/j.jallcom.2013.12.091
[166] Lamberti Andrea Rossana Gazia Adriano Sacco Stefano Bianco Marzia Quaglio Angelica Chiodoni Elena Tresso and Candido Fabrizio Pirri. Coral‐shaped ZnO nanostructures for dye‐sensitized solar cell photoanodes. Progress in Photovoltaics: Research and Applications 22 no. 2 (2014): 189-197. https://doi.org/10.1002/pip.2251
[167] Yun, Sining, Yong Qin, Alexander R. Uhl, Nick Vlachopoulos, Min Yin, Dongdong Li, Xiaogang Han, and Anders Hagfeldt. “New-generation integrated devices based on dye-sensitized and perovskite solar cells.” Energy & Environmental Science 11, no. 3 (2018): 476-526. https://doi.org/10.1039/C7EE03165C
[168] Park, Nam‐Gyu. “Research direction toward scalable, stable, and high efficiency perovskite solar cells.” Advanced Energy Materials 10, no. 13 (2020): 1903106. https://doi.org/10.1002/aenm.201903106
[169] Ouedraogo, Nabonswende Aida Nadege, Yichuan Chen, Yue Yue Xiao, Qi Meng, Chang Bao Han, Hui Yan, and Yongzhe Zhang. “Stability of all-inorganic perovskite solar cells.” Nano Energy 67 (2020): 104249. https://doi.org/10.1016/j.nanoen.2019.104249
[170] Schwenzer, Jonas A., Lucija Rakocevic, Tobias Abzieher, Diana Rueda-Delgado, Somayeh Moghadamzadeh, Saba Gharibzadeh, Ihteaz M. Hossain et al. “Toward stable perovskite solar cell architectures: robustness against temperature variations of real-world conditions.” IEEE Journal of Photovoltaics 10, no. 3 (2020): 777-784. https://doi.org/10.1109/JPHOTOV.2020.2969785
[171] Kojima, Akihiro, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.” Journal of the american chemical society 131, no. 17 (2009): 6050-6051. https://doi.org/10.1021/ja809598r
[172] Zhao, Jingjing, Xiaopeng Zheng, Yehao Deng, Tao Li, Yuchuan Shao, Alexei Gruverman, Jeffrey Shield, and Jinsong Huang. “Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?.” Energy & Environmental Science 9, no. 12 (2016): 3650-3656. https://doi.org/10.1039/C6EE02980A
[173] Pauportè, Thierry. “Synthesis of ZnO nanostructures for solar cells-a focus on dye-sensitized and perovskite solar cells.” In The Future of Semiconductor Oxides in Next-Generation Solar Cells, pp. 3-43. Elsevier, 2018. https://doi.org/10.1016/B978-0-12-811165-9.00001-6
[174] Luo, Jun, Yanxiang Wang, and Qifeng Zhang. “Progress in perovskite solar cells based on ZnO nanostructures.” Solar Energy 163 (2018): 289-306. https://doi.org/10.1016/j.solener.2018.01.035
[175] Yang, Guang, Hong Tao, Pingli Qin, Weijun Ke, and Guojia Fang. “Recent progress in electron transport layers for efficient perovskite solar cells.” Journal of Materials Chemistry A 4, no. 11 (2016): 3970-3990. https://doi.org/10.1039/C5TA09011C
[176] Liu, Dianyi, and Timothy L. Kelly. “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.” Nature photonics 8, no. 2 (2014): 133-138. https://doi.org/10.1038/nphoton.2013.342
[177] Yang, Xiaohui, Ruixue Wang, Changjun Fan, Guoqing Li, Zuhong Xiong, and Ghassan E. Jabbour. “Ethoxylated polyethylenimine as an efficient electron injection layer for conventional and inverted polymer light emitting diodes.” Organic Electronics 15, no. 10 (2014): 2387-2394. https://doi.org/10.1016/j.orgel.2014.07.009
[178] Zuo, Lijian, Zhuowei Gu, Tao Ye, Weifei Fu, Gang Wu, Hanying Li, and Hongzheng Chen. “Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer.” Journal of the American Chemical Society 137, no. 7 (2015): 2674-2679. https://doi.org/10.1021/ja512518r
[179] Zheng, Enqiang, Yaqin Wang, Jiaxing Song, Xiao-Feng Wang, Wenjing Tian, Gang Chen, and Tsutomu Miyasaka. “ZnO/ZnS core-shell composites for low-temperature-processed perovskite solar cells.” Journal of energy chemistry 27, no. 5 (2018): 1461-1467. https://doi.org/10.1016/j.jechem.2017.09.026
[180] Duan, Jinxia, Qiu Xiong, Hao Wang, Jun Zhang, and Jinghua Hu. “ZnO nanostructures for efficient perovskite solar cells.” Journal of Materials Science: Materials in Electronics 28, no. 1 (2017): 60-66. https://doi.org/10.1007/s10854-016-5492-3
[181] Mahmood, Khalid, Bhabani Sankar Swain, and Aram Amassian. “16.1% Efficient hysteresis‐free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays.” Advanced Energy Materials 5, no. 17 (2015): 1500568. https://doi.org/10.1002/aenm.201500568
[182] Li, Shibin, Peng Zhang, Hao Chen, Yafei Wang, Detao Liu, Jiang Wu, Hojjatollah Sarvari, and Zhi David Chen. “Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods.” Journal of Power Sources 342 (2017): 990-997. https://doi.org/10.1016/j.jpowsour.2017.01.024
[183] Zhuiykov, Serge. Nanostructured semiconductor oxides for the next generation of electronics and functional devices: properties and applications. Woodhead Publishing, 2014.
[184] Norton, D. P., Y. W. Heo, and M. P. Lvill. “K. lp, SJ Pearton, MF Chisholm, T. Steiner.” Mater. Today 34 (2004). https://doi.org/10.1016/S1369-7021(04)00287-1
[185] Zheng, Yan-Zhen, Er-Fei Zhao, Fan-Li Meng, Xue-Sen Lai, Xue-Mei Dong, Jiao-Jiao Wu, and Xia Tao. “Iodine-doped ZnO nanopillar arrays for perovskite solar cells with high efficiency up to 18.24%.” Journal of Materials Chemistry A 5, no. 24 (2017): 12416-12425. https://doi.org/10.1039/C7TA03150E
[186] Mahmood, Khalid, Bhabani Sankar Swain, and Hyun Suk Jung. “Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells.” Nanoscale 6, no. 15 (2014): 9127-9138. https://doi.org/10.1039/C4NR02065K
[187] Zhang, Rong, Chengbin Fei, Bo Li, Haoyu Fu, Jianjun Tian, and Guozhong Cao. “Continuous size tuning of monodispersed ZnO nanoparticles and its size effect on the performance of perovskite solar cells.” ACS Applied Materials & Interfaces 9, no. 11 (2017): 9785-9794. https://doi.org/10.1021/acsami.7b00726
[188] Zhang, Huiyin, Jiangjian Shi, Xin Xu, Lifeng Zhu, Yanhong Luo, Dongmei Li, and Qingbo Meng. “Mg-doped TiO 2 boosts the efficiency of planar perovskite solar cells to exceed 19%.” Journal of Materials Chemistry A 4, no. 40 (2016): 15383-15389. https://doi.org/10.1039/C6TA06879K