Intrinsic Point Defects in ZnO

$30.00

Intrinsic Point Defects in ZnO

Vikas Dhiman, Prashant Choudhary, Neha Kondal

ZnO has attracted extraordinary interest as a premier host for dilute magnetic semiconductors due to its potential usage in optoelectronics, spin light emitting diodes, photovoltaics, photodetectors, and solar cells. It is a prospective material for spin light emitting diodes due to its broad band gap of 3.37 eV and high exciton binding energy. The extraordinary properties of ZnO results from the interactions of intrinsic defects in ZnO. The redistribution of these defects within the grain using sintering, annealing or extrinsic doping helps in tailoring the optical, electrical and magnetic properties of ZnO. Therefore, in this chapter, we will discuss about various intrinsic point defects present in ZnO, defect creation techniques, defect characterization, the factor affecting defect formation. The Zinc interstitial, Oxygen vacancies and their complexes are responsible for various band emissions and hence luminescent properties of various defects in ZnO are discussed.

Keywords
ZnO, Native Defects, Photoluminescence

Published online , 32 pages

Citation: Vikas Dhiman, Prashant Choudhary, Neha Kondal, Intrinsic Point Defects in ZnO, Materials Research Foundations, Vol. 146, pp 35-66, 2023

DOI: https://doi.org/10.21741/9781644902394-2

Part of the book on ZnO and Their Hybrid Nano-Structures

References
[1] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dog˘an, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98:4 (2005) 041301, https://doi.org/10.1063/1.1992666
[2] J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T Maiyalagan, H.S. Kim, A review on ZnO nanostructured materials: energy, environmental and biological applications, Nanotechnology 30 (2019) 392001, https://doi.org/10.1088/1361-6528/ab268a
[3] H. Dong, B. Zhou, J. Li, J. Zhan, L. Zhang, Ultraviolet lasing behavior in ZnO optical microcavities, Journal of Materiomics 3:4 (2017) 255-266, https://doi.org/10.1016/j.jmat.2017.06.001
[4] F. Rahman, Zinc oxide light-emitting diodes: a review, Optical Engineering 58:1 (2019) 010901, https://doi.org/10.1117/1.OE.58.1.010901
[5] C. Torres-Torres, J.H. Castro-Chacón, L. Castañeda, R.R. Rojo, R. Torres-Martínez, L. Tamayo-Rivera, A.V. Khomenko, Ultrafast nonlinear optical response of photoconductive ZnO films with fluorine nanoparticles, Optics Express 19:17 (2011) 16346-16355, https://doi.org/10.1364/OE.19.016346
[6] Y. Liu, Y. Li, H. Zeng, ZnO-based transparent conductive thin films: doping, performance, and processing, 2013 (2013) 196521, https://doi.org/10.1155/2013/196521
[7] Y. Lu, N. Emanetoglu, Y. Chen, ZnO Piezoelectric Devices; In book: Zinc oxide bulk, thin films and nanostructures (2006) 443-489, https://doi.org/10.1016/B978-008044722-3/50013-0
[8] Ü. Özgür, D. Hofstetter, H. Morkoç, ZnO devices and applications: A review of current status and future prospects, Proceedings of the IEEE 98:7 (2010) 1255–1268, https://doi.org/10.1109/jproc.2010.2044550
[9] K. Koike, T. Aoki, R. Fujimoto, S. Sasa, M. Yano, S. Gonda, R. Ishigami, K. Kume, Radiation hardness of single-crystalline zinc oxide films, Physica Status Solidi (c) 9:7 (2012) 1577–1579, https://doi.org/10.1002/pssc.201100566
[10] D.C. Look, Recent advances in ZnO materials and devices, Materials Science and Engineering: B 80 (2001) 383–387, https://doi.org/10.1016/s0921-5107(00)00604-8
[11] P.J.P. Espitia, N. de F.F. Soares, J. S. dos R. Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications, Food and Bioprocess Technology 5:5 (2012) 1447–1464. https://doi.org/10.1007/s11947-012-0797-6
[12] M.A. Borysiewicz, ZnO as a functional material, a review, Crystals 9 (2019) 505-533, https://doi.org/10.1109/10.3390/cryst9100505
[13] A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: A review, Materials (Basel) 7:4 (2014) 2833–2881, https://doi.org/10.3390/ma7042833
[14] S. Sabir, M. Arshad, S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications, The Scientific World Journal 2014 (2014) 925494, https://doi.org/10.1155/2014/925494
[15] S. Choi, M.R. Phillips, I. Aharonovich, S. Pornsuwan, B.C.C. Cowie, C. Ton-That, Photophysics of point defects in ZnO nanoparticles, Advanced Optical Materials 3:6 (2015) 821-827, https://doi.org/10.1002/adom.201400592
[16] P. A. Rodnyi, I. V. Khodyuk, Optical and luminescence properties of zinc oxide (Review), Optics and Spectroscopy 111 (2011) 776–785, https://doi.org/10.1134/S0030400X11120216
[17] M.A. Reshchikov, H. Morkoç, B. Nemeth, J. Nause, J. Xie, B. Hertog, A. Osinsky, Luminescence properties of defects in ZnO, Physica B: Condensed Matter 401–402 (2007) 358-361, https://doi.org/10.1016/j.physb.2007.08.187
[18] A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A. Dutt, Photoluminescence of ZnO nanowires: A review, Nanomaterials 10:5 (2020) 857, https://doi.org/10.3390/nano10050857
[19] A. Janotti, C.G. Van de Walle, Native point defects in ZnO, Physical Review B 76 (2007) 165202, https://doi.org/10.1103/PhysRevB.76.165202
[20] T.-L. Phan, Y.D. Zhang, D.S. Yang, N.X. Nghia, T.D. Thanh, S.C. Yu, Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling, Appl. Phys. Lett. 102 (2013) 072408, https://doi.org/10.1063/1.4793428
[21] K. Rainey, J. Chess, J. Eixenberger, D.A. Tenne, C.B. Hanna, A. Punnoose, Defect induced ferromagnetism in undoped ZnO nanoparticles, Journal of Applied Physics 115:17 (2014) 17D727, https://doi.org/10.1063/1.4867596
[22] Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in ZnO films due to defects, Appl. Phys. Lett. 92 (2008) 082508, https://doi.org/10.1063/1.2885730
[23] D.C. Look, T.C. Droubay, S.A. Chambers, Stable highly conductive ZnO via reduction of Zn vacancies, Appl. Phys. Lett. 101 (2012) 102101, https://doi.org/10.1063/1.4748869
[24] V. Dhiman, N. Kondal, MoS2–ZnO nanocomposites for photocatalytic energy conversion and solar applications, Physica B 628 (2022) 413569, https://doi.org/10.1016/j.physb.2021.413569
[25] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276, https://doi.org/10.1107/S0021889811038970
[26] P.K. Samanta, P.R. Chaudhuri, Growth and optical properties of chemically grown ZnO nanobelts, Sci. Adv. Mater. 3:1 (2011) 107–112, https://doi.org/10.1166/sam.2011.1141
[27] A. Eftekhari, F. Molaei, H. Arami, Flower-like bundles of ZnO nanosheets as an intermediate between hollow nanosphere and nanoparticles, Mater. Sci. Eng. A 437 (2) (2006) 446–450, https://doi.org/10.1016/j.msea.2006.08.033
[28] T.M. de B. Farias, S. Watanabe, A comparative study of the thermo luminescence properties of several varieties of Brazilian natural quartz, J. Lumin. 132:10 (2012) 2684–2692, https://doi.org/10.1016/j.jlumin.2012.04.047
[29] J. Geurts, Crystal structure, chemical binding, and lattice properties, Springer Series in Materials Science (2010) 7–37, https://doi.org/10.1007/978-3-642-10577-7_2
[30] A. Segura, J.A. Sans, F.J. Manjón, A. Muñoz, M.J. Herrera-Cabrera, Optical properties and electronic structure of rock-salt ZnO under pressure, Applied Physics Letters 83:2 (2003) 278–280, https://doi.org/10.1063/1.1591995
[31] M. Khuili, N. Fazouan, H.A.E. Makarim, DFT study of physical properties of wurtzite, zinc blende, and rocksalt phases of zinc oxide using GGA and TB-mBJ potential, 3rd International Renewable and Sustainable Energy Conference (IRSEC) (2015), https://doi.org/10.1109/irsec.2015.7454962
[32] S.S. Li, Classification of solids and crystal structure. In: Semiconductor Physical Electronics. Microdevices (Physics and Fabrication Technologies). Springer, Boston, MA (1993), https://doi.org/10.1007/978-1-4613-0489-0_1
[33] W.B. Fowler, Point defects. In: Encyclopedia of Condensed Matter Physics, Elsevier (2005) 318-323, https://doi.org/10.1016/B0-12-369401-9/00412-5
[34] J. Zhang, G. Hong, Synthetic chemistry of nonstoichiometric compounds. In: Modern Inorganic Synthetic Chemistry, Elsevier (2011) 321–338, https://doi.org/10.1016/b978-0-444-53599-3.10015-0
[35] H.L. Tuller, S.R. Bishop, Point defects in oxides: Tailoring materials through defect engineering, Annual Review of Materials Research 41 (2011) 369-398, https://doi.org/10.1146/annurev-matsci-062910-100442
[36] B. Pieraggi, Defects and transport in oxides and oxide scales. Shreir’s Corrosion (2010) 101–131, https://doi.org/10.1016/b978-044452787-5.00009-3
[37] M. Jiang, D.D. Wang, B. Zou, Z.Q. Chen, A. Kawasuso, T. Sekiguchi, Effect of high temperature annealing on defects and optical properties of ZnO single crystals, Phys. Status Solidi A 209:11 (2012) 2126–2130, https://doi.org/10.1002/pssa.201127527
[38] L.E. Halliburton, N.C. Giles, N.Y. Garces, M. Luo, C. Xu, L. Bai. Production of native donors in ZnO by annealing at high temperature in Zn vapor, Appl. Phys. Lett. 87 (2005) 172108, https://doi.org/10.1063/1.2117630
[39] C.-H. Hsu, X.-P. Geng, W.-Y. Wu, M.-J. Zhao, X.-Y. Zhang, P.-H. Huang, S.-Y. Lien, Air annealing effect on oxygen vacancy defects in al-doped zno films grown by high-speed atmospheric atomic layer deposition, Molecules 25:21 (2020) 5043, https://doi.org/10.3390/molecules25215043
[40] T.P. Yadav, R.M. Yadav, D.P. Singh, Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites, Nanoscience and Nanotechnology 2:3 (2012) 22-48, https://doi.org/10.5923/j.nn.20120203.01
[41] S. Ghose, A. Sarkar, S. Chattopadhyay, M. Chakrabarti, D. Das, T. Rakshit, S.K. Ray, D. Jana, Surface defects induced ferromagnetism in mechanically milled nanocrystalline ZnO, Journal of Applied Physics 114 (2013) 073516, https://doi.org/10.1063/1.4818802
[42] S. Ghose, T. Rakshit, R. Ranganathan, D. Jana, Role of Zn-interstitial defect states on d0 ferromagnetism of mechanically milled ZnO nanoparticles, RSC Adv. 5 (2015) 99766-99774, https://doi.org/10.1039/C5RA13846A
[43] H.V. Wenckstern, H. Schmidt, M. Brandt, A. Lajn, R. Pickenhain, et al., Anionic and cationic substitution in ZnO, Progress in Solid State Chemistry 37:2-3 (2009) 153–172, https://doi.org/10.1016/j.progsolidstchem.2009.11.008
[44] J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, p-Type ZnO materials: Theory, growth, properties and devices, Progress in Materials Science 58:6 (2013) 874-985, https://doi.org/10.1016/j.pmatsci.2013.03.002
[45] R.G. Elliman, J.S. Williams, Advances in ion beam modification of semiconductors, Current Opinion in Solid State and Materials Science 19:1 (2015) 49-67, https://doi.org/10.1016/j.cossms.2014.11.007
[46] S. Dey, J. Mardinly, Y. Wang, J.A. Valdez, T.G. Holesinger, B.P. Uberuaga, J.J. Ditto, J.W. Drazina, R.H.R. Castro, Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries, Physical Chemistry Chemical Physics 18:25 (2016) 16921–16929, https://doi.org/10.1039/c6cp01763k
[46] F. Oba, M. Choi, A. Togo, I. Tanaka, Point defects in ZnO: An approach from first principles, Sci. Technol. Adv. Mater. 12:3 (2011) 034302, http://dx.doi.org/10.1088/1468-6996/12/3/034302
[47] S.E. Harrison, Conductivity and Hall Effect of ZnO at Low Temperatures, Phys. Rev. 93:1 (1954) 52-62, https://doi.org/10.1103/PhysRev.93.52
[48] F. Oba, S.R. Nishitani, S. Isotani, H. Adachi, I. Tanaka, Energetics of native defects in ZnO, J. Appl. Phys. 90 (2001) 824, http://dx.doi.org/10.1063/1.1380994
[49] Y. Guan, Q. Hou, D. Xia, Effect of intrinsic point defects on ZnO electronic structure and absorption spectra, International Journal of Modern Physics B 34:17 (2020) 2050147 http://dx.doi.org/10.1142/S0217979220501477
[50] A.A. Sokol, S.A. French, S.T. Bromley, C.R.A. Catlow, H.J.J. van Dam, P. Sherwood, Point defects in ZnO, Faraday Discuss. 134 (2007) 267-282, http://dx.doi.org/10.1039/b607406e
[51] S.B. Zhang, S.-H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Physical Review B 63:7 (2001) 075205, http://dx.doi.org/10.1103/physrevb.63.075205
[52] D.C. Look, J.W. Hemsky, J.R. Sizelove, Residual Native Shallow Donor in ZnO, Phys. Rev. Lett. 82:12 (1999) 2552-2555, https://doi.org/10.1103/PhysRevLett.82.2552
[53] A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, First-principles study of native point defects in ZnO, Phys. Rev. B 61 (2000) 15019, https://doi.org/10.1103/PhysRevB.61.15019
[54] D.G. Thomas, Interstitial zinc in zinc oxide, J. Phys. Chem. Solids 3:3-4 (1957) 229-237, https://doi.org/10.1016/0022-3697(57)90027-6
[55] F. Oba, A. Togo, I. Tanaka, J. Paier, G. Kresse, Defect energetics in ZnO: A hybrid Hartree-Fock density functional study, Phys. Rev. B 77 (24) (2008) 245202, https://doi.org/10.1103/PhysRevB.77.245202
[56] Y.S. Kim, C.H. Park, Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: Origin of n-type doping, Physical Review Letters 102:8 (2009) 1-4, https://doi.org/10.1103/PhysRevLett.102.086403
[57] F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-Type ZnO, Phys. Rev. Lett. 91 (2003) 205502, https://doi.org/10.1103/PhysRevLett.91.205502
[58] P. Erhart, K. Albe, A. Klein, First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects, Phys. Rev. B 73:20 (2006) 205203, https://doi.org/10.1103/PhysRevB.73.205203
[59] P. Erhart, A. Klein, K. Albe, First-principles study of the structure and stability of oxygen defects in zinc oxide, Phys. Rev. B 72:8 (2005) 085213, https://doi.org/10.1103/PhysRevB.72.085213
[60] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys. 79 (10) (1996) 7983–7990, https://doi.org/10.1063/1.362349
[61] F.H. Leiter, H.R. Alves, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, The oxygen vacancy as the origin of a green emission in undoped ZnO, Phys. Status Solidi Basic Res. 226:1 (2001) R4–R5, https://doi.org/ https://doi.org/10.1002/1521-3951(200107)226:13.0.CO;2-F
[62] H. Akazawa, Identification of defect species in ZnO thin films through process modification and monitoring of photoluminescent properties, Journal of Vacuum Science & Technology A 37 (2019) 061514, https://doi.org/10.1116/1.5121439
[63] P.S. Venkatesh, V. Ramakrishnan, K. Jeganathan, Investigations on the growth of manifold morphologies and optical properties of ZnO nanostructures grown by radio frequency magnetron sputtering, AIP Advances 3:8 (2013), https://doi.org/10.1063/1.4820386.
[64] L.J. Brillson, W.T. Ruane, H. Gao, Y. Zhang, S. Diego, Spatially-resolved cathodoluminescence spectroscopy of ZnO defects, Materials Science in Semiconductor Processing 57:1 (2017) 197-209, https://doi.org/10.1016/j.mssp.2016.10.032
[65] N. Bano, I. Hussain, O. Nour, M. Willander, Q. Wahab, A. Henry, H.S. Kwack, D.L.S. Dang, Depth-resolved cathodoluminescence study of zinc oxide nanorods catalytically grown on p-type 4H-SiC, , Journal of Luminescence 130 (2010) 963-968, http://dx.doi.org/10.1016/j.jlumin.2010.01.006
[66] M. Ellguth, M. Schmidt, R. Pickenhain, H.V. Wenckstern, M. Grundmann, Characterization of point defects in ZnO thin films by optical deep level transient spectroscopy, Phys. Status Solidi B 248:4 (2011) 941-949, https://doi.org/10.1002/pssb.201046244
[67] L.S. Vlasenko, Point defects in ZnO: Electron paramagnetic resonance study, Physica B Condensed Matter 404:23-24 (2009) 4774-4778, https://doi.org/10.1016/j.physb.2009.08.149
[68] A. Maqsood, M. Islam, M. Ikram, S. Salam, S. Ameer, Synthesis, characterization and hall effect measurements of nanocrystalline ZnO thin films, Key Engineering Materials 510-511(2012) 186-193, https://doi.org/10.4028/www.scientific.net/KEM.510-511.186
[69] M. Brocklebank, J.J. Noël, L.V. Goncharova, In situ Rutherford backscattering spectrometry for electrochemical studies, Journal of The Electrochemical Society166:11 (2019) C3290, https://doi.org/10.1149/2.0301911jes
[70] F. Tuomisto, I. Makkonen, Defect identification in semiconductors with positron annihilation: Experiment and theory, Rev. Mod. Phys. 85 (2013) 1583, https://doi.org/10.1103/RevModPhys.85.1583.
[71] V.V. Strelchuk, V.P. Kladko, E.A. Avramenko, O.F. Kolomys, et al., X-ray diffraction analysis and scanning micro-Raman spectroscopy of structural irregularities and strains deep inside the multilayered InGaN/GaN heterostructure, Semiconductors 44:9 (2010) 1199-1210, https://doi.org/10.1134/S1063782610090174
[72] U. Ross, A. Lotnyk, E. Thelander, B. Rauschenbach, Direct imaging of crystal structure and defects in metastable Ge2Sb2Te5 by quantitative aberration-corrected scanning transmission electron microscopy, Applied Physics Letters 104 (2014) 121904, http://dx.doi.org/10.1063/1.4869471
[73] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, 90:12 (2006) 1773–1787, https://doi.org/10.1016/j.solmat.2005.11.007
[74] H. Rai, Prashant, N. Kondal, A review on defect related emissions in undoped ZnO nanostructures, Materials Today: Proceedings 48: 5 (2022) 1320-1324, https://doi.org/10.1016/j.matpr.2021.08.343
[75] D.M. Hofmann, D. Pfisterer, J. Sann, B.K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, G. Pensl, Properties of the oxygen vacancy in ZnO, Appl. Phys. A 88:1 (2007) 147-151, https://doi.org/10.1007/s00339-007-3956-2
[76] J.J. Wu, S.C. Liu, Catalyst-Free Growth and Characterization of ZnO Nanorods, J. Phys. Chem. B 106:37 (2002) 9546-9551, https://doi.org/10.1021/jp025969j
[77] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls, Adv. Funct. Mater. 20 (4) (2010) 561-572, https://doi.org/10.1002/adfm.200901884
[78] H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media, J. Phys. Chem. B 109:39 (2005) 18260-18266, https://doi.org/10.1021/jp052258n
[79] D.C. Look, G.C. Farlow, P. Reunchan, S. Limpijumnong, S.B. Zhang, K. Nordlund, Evidence for native-defect donors in n-type ZnO, Phys. Rev. Lett. 95:22 (2005) 1-4, https://doi.org/10.1103/PhysRevLett.95.225502
[80] V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess, Zinc oxide nanoparticles with defects, Adv. Funct. Mater. 15:12 (2005) 1945-1954, https://doi.org/10.1002/adfm.200500087
[81] Z. Zang, M. Wen, W. Chen, Y. Zeng, Z. Zu, X. Zeng, X. Tang, Strong yellow emission of ZnO hollow nanospheres fabricated using polystyrene spheres as templates, Materials & Design 84 (2015) 418-421, https://doi.org /10.1016/j.matdes.2015.06.141
[82] W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Structure and visible luminescence of ZnO nanoparticles, Mater. Sci. Semicond. Process. 9:1-3 (2006) 156-159, https://doi.org /10.1016/j.mssp.2006.01.038
[83] D. Zwingel, Trapping and recombination processes in the thermoluminescence of Li-doped ZnO single crystals, J. Lumin. 5:6 (1972) 385-405, https://doi.org/10.1016/0022-2313(72)90001-4
[84] F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition, Appl. Phys. Lett. 86:22 (2005) 221910, https://doi.org/10.1063/1.1939078
[85] Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu, J.H. Yang, Deep-level emissions influenced by O and Zn implantations in ZnO, Appl. Phys. Lett. 87:21 (2005) 211912, https://doi.org/10.1063/1.2135880
[86] M. Liu, A.H. Kitai, P. Mascher, Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese, J. Lumin. 54:1 (1992) 35-42, https://doi.org/10.1016/0022-2313(92)90047-d.
[87] P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, The electronic structure and spectral properties of ZnO and its defects, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 199 (2003) 286–290, https://doi.org/10.1016/S0168-583X(02)01425-8
[88] N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett. 81:4 (2002) 622-624, https://doi.org/10.1063/1.1494125
[89] T.H. Gfroerer, Photoluminescence in analysis of surface and interfaces, Encyclopedia of Analytical Chemistry, R. A. Meyers, John Wiley & Sons Ltd (2000) 9209-9231
[90] L. Jing, F. Yuan, H. Hou, B. Xin, W. Cai, H. Fu, Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles, Science in China Ser. B Chemistry 48 (2005) 25-30, https://doi.org/10.1007/BF02990909
[91] G.J. Lee, Y.P. Lee, H.-H. Lim, M. Cha, S.S. Kim, H. Cheong, S.-K. Min, S.-H. Han, Photoluminescence and lasing properties of ZnO nanorods, Journal of the Korean Physical Society 57:6 (2010) 1624-1629, https://doi.org/10.3938/jkps.57.1624
[92] S.C. Choi, D.K. Lee, S.H. Sohn, Morphological and optical properties of cobalt ion-modified ZnO nanowires, Catalysts 10 (2020) 614, https://doi.org/10.3390/catal10060614
[93] K.P. Raj, K. Sadaiyandi, A. Kennedy, et al., Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis, Nanoscale Research Letters 13 (2018) 229-241, https://doi.org/10.1186/s11671-018-2643-x
[94] U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes, RSC Adv. 8 (2018) 17582, https://doi.org/10.1039/c8ra01638k
[95] P.R. Talakonda, Excitation‐intensity (EI) effect on photoluminescence of ZnO materials with various morphologies. In: Luminescence – An outlook on the phenomena and their applications, IntechOpen (2016) 91-105, http://dx.doi.org/10.5772/64937
[96] B. Das, P. Kumar, C.N.R. Rao, Factors affecting laser-excited photoluminescence from ZnO nanostructures, J. Clust. Sci. 23 (2012) 649–659, http://dx.doi.org/10.1007/s10876-012-0453-3
[97] L.H. Quang, S.J. Chua, K.P. Loh, E. Fitzgerald, The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis, Journal of Crystal Growth 287:1 (2006), 157–161, http://dx.doi.org/10.1016/j.jcrysgro.2005.10.060