Use of Nanomaterials in Bone Regeneration

$30.00

Use of Nanomaterials in Bone Regeneration

N. Fattahi, A. Ramazani

Over the past few decades, studies on bone tissue engineering have inspired innovation in novel materials, processing methods, performance evaluations, and applications. Nanomaterials have great promise for the creation of novel treatment solutions, such as bone regeneration and repair, as well as the replacement of organs and tissues. Bone tissue engineering is facilitated by nanomaterials that replicate bone characteristics and provide special functions. Nanomaterials can be employed in their natural state as drug delivery system carriers or as fillers to strengthen bone regeneration scaffolds. This chapter is focused on nanomaterials used in or being developed for bone regeneration. The present chapter aims to inspire readers to explore new avenues for designing and developing efficient and effective nanomaterials for bone regeneration applications.

Keywords
Bone Regeneration, Nanomaterials, Bone Biology, Biomaterials, Tissue Engineering

Published online , 30 pages

Citation: N. Fattahi, A. Ramazani, Use of Nanomaterials in Bone Regeneration, Materials Research Proceedings, Vol. 145, pp 177-206, 2023

DOI: https://doi.org/10.21741/9781644902370-7

Part of the book on Nanobiomaterials

References
[1] P. Kumar, M. Saini, B.S. Dehiya, A. Sindhu, V. Kumar, R. Kumar, L. Lamberti, C.I. Pruncu, R. Thakur, Comprehensive survey on nanobiomaterials for bone tissue engineering applications, Nanomaterials. 10 (2020) 1–60. https://doi.org/10.3390/nano10102019
[2] G.G. Walmsley, A. McArdle, R. Tevlin, A. Momeni, D. Atashroo, M.S. Hu, A.H. Feroze, V.W. Wong, P.H. Lorenz, M.T. Longaker, D.C. Wan, Nanotechnology in bone tissue engineering, Nanomedicine Nanotechnology, Biol. Med. 11 (2015) 1253–1263. https://doi.org/10.1016/j.nano.2015.02.013
[3] G.T. STRICKLAND, Hunter’s Tropical Medicine and emerging infectious diseases, Elsevier Health Sciences, 2001. https://doi.org/10.1590/s0036-46652001000200018
[4] A. Atala, R. Lanza, J.A. Thomson, R.M. Nerem, Principles of Regenerative Medicine, Academic press, 2008. https://doi.org/10.1016/B978-0-12-369410-2.X5001-3
[5] M. Pfeiffenberger, A. Damerau, A. Lang, F. Buttgereit, P. Hoff, T. Gaber, Fracture healing research—shift towards in vitro modeling?, Biomedicines. 9 (2021) 748. https://doi.org/10.3390/biomedicines9070748
[6] R.A. Pérez, J.E. Won, J.C. Knowles, H.W. Kim, Naturally and synthetic smart composite biomaterials for tissue regeneration, Adv. Drug Deliv. Rev. 65 (2013) 471–496. https://doi.org/10.1016/j.addr.2012.03.009
[7] H. Ahankar, A. Ramazani, N. Fattahi, K. Ślepokura, T. Lis, P.A. Asiabi, V. Kinzhybalo, Y. Hanifehpour, S.W. Joo, Tetramethylguanidine-functionalized silica-coated iron oxide magnetic nanoparticles catalyzed one-pot three-component synthesis of furanone derivatives, J. Chem. Sci. 130 (2018) 1–13. https://doi.org/10.1007/s12039-018-1572-7
[8] S. Minardi, F. Taraballi, L. Pandolfi, E. Tasciotti, Patterning biomaterials for the spatiotemporal delivery of bioactive molecules, Front. Bioeng. Biotechnol. 4 (2016) 45. https://doi.org/10.3389/fbioe.2016.00045
[9] F. Karkeh-Abadi, H. Safardoust-Hojaghan, L.S. Jasim, W.K. Abdulsahib, M.A. Mahdi, M. Salavati-Niasari, Synthesis and characterization of Cu2Zn1.75Mo3O12 ceramic nanoparticles with excellent antibacterial property, J. Mol. Liq. 356 (2022) 119035. https://doi.org/10.1016/j.molliq.2022.119035
[10] N. Yu, L. Zhao, D. Cheng, M. Ding, Y. Lyu, J. Zhao, J. Li, Radioactive organic semiconducting polymer nanoparticles for multimodal cancer theranostics, J. Colloid Interface Sci. 619 (2022) 219–228. https://doi.org/10.1016/j.jcis.2022.03.107
[11] N. Wang, D. Qi, L. Liu, Y. Zhu, H. Liu, S. Zhu, Fabrication of In Situ Grown Hydroxyapatite Nanoparticles Modified Porous Polyetheretherketone Matrix Composites to Promote Osteointegration and Enhance Bone Repair, Front. Bioeng. Biotechnol. 10 (2022). https://doi.org/10.3389/fbioe.2022.831288
[12] C. Covarrubias, J. Bejarano, M. Maureira, C. Tapia, M. Díaz, J.P. Rodríguez, H. Palza, F. Lund, A. Von Marttens, P. Caviedes, M. Yazdani-Pedram, Preparation of osteoinductive – Antimicrobial nanocomposite scaffolds based on poly (D,L-lactide-co-glycolide) modified with copper – Doped bioactive glass nanoparticles, Polym. Polym. Compos. 30 (2022) 09673911221098231. https://doi.org/10.1177/09673911221098231
[13] B. Clarke, Normal bone anatomy and physiology., Clin. J. Am. Soc. Nephrol. 3 Suppl 3 (2008) S131–S139. https://doi.org/10.2215/CJN.04151206
[14] I. Makhoul, C.O. Montgomery, D. Gaddy, L.J. Suva, The best of both worlds-managing the cancer, saving the bone, Nat. Rev. Endocrinol. 12 (2016) 29–42. https://doi.org/10.1038/nrendo.2015.185
[15] J.H. Jang, O. Castano, H.W. Kim, Electrospun materials as potential platforms for bone tissue engineering, Adv. Drug Deliv. Rev. 61 (2009) 1065–1083. https://doi.org/10.1016/j.addr.2009.07.008
[16] A.R.J.A. de M. Lima, A.S. Siqueira, M.L.S. Möller, R.C. de Souza, J.N. Cruz, A.R.J.A. de M. Lima, R.C. da Silva, D.C.F. Aguiar, J.L. da S.G.V. Junior, E.C. Gonçalves, In silico improvement of the cyanobacterial lectin microvirin and mannose interaction, J. Biomol. Struct. Dyn. (2020). https://doi.org/10.1080/07391102.2020.1821782
[17] J.S. Kenkre, J.H.D. Bassett, The bone remodelling cycle, Ann. Clin. Biochem. 55 (2018) 308–327. https://doi.org/10.1177/0004563218759371
[18] S. Torgbo, P. Sukyai, Bacterial cellulose-based scaffold materials for bone tissue engineering, Appl. Mater. Today. 11 (2018) 34–49. https://doi.org/10.1016/j.apmt.2018.01.004
[19] V. Babuska, P.B. Kasi, P. Chocholata, L. Wiesnerova, J. Dvorakova, R. Vrzakova, A. Nekleionova, L. Landsmann, V. Kulda, Nanomaterials in Bone Regeneration, Appl. Sci. 12 (2022) 6793. https://doi.org/10.3390/app12136793
[20] J.M. Wagner, F. Reinkemeier, C. Wallner, M. Dadras, J. Huber, S.V. Schmidt, M. Drysch, S. Dittfeld, H. Jaurich, M. Becerikli, K. Becker, N. Rauch, V. Duhan, M. Lehnhardt, B. Behr, Adipose-Derived Stromal Cells Are Capable of Restoring Bone Regeneration After Post-Traumatic Osteomyelitis and Modulate B-Cell Response, Stem Cells Transl. Med. 8 (2019) 1084–1091. https://doi.org/10.1002/sctm.18-0266
[21] H. Ma, C. Jiang, D. Zhai, Y. Luo, Y. Chen, F. Lv, Z. Yi, Y. Deng, J. Wang, J. Chang, C. Wu, A Bifunctional Biomaterial with Photothermal Effect for Tumor Therapy and Bone Regeneration, Adv. Funct. Mater. 26 (2016) 1197–1208. https://doi.org/10.1002/adfm.201504142
[22] Y. Yang, L. Chu, S. Yang, H. Zhang, L. Qin, O. Guillaume, D. Eglin, R.G. Richards, T. Tang, Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models, Acta Biomater. 79 (2018) 265–275. https://doi.org/10.1016/j.actbio.2018.08.015
[23] F. Loi, L.A. Córdova, J. Pajarinen, T. hua Lin, Z. Yao, S.B. Goodman, Inflammation, fracture and bone repair, Bone. 86 (2016) 119–130. https://doi.org/10.1016/j.bone.2016.02.020
[24] G. Balasundaram, D.M. Storey, T.J. Webster, Novel nano-rough polymers for cartilage tissue engineering, Int. J. Nanomedicine. 9 (2014) 1845–1853. https://doi.org/10.2147/IJN.S55865
[25] L. Mishnaevsky, E. Levashov, R.Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A. V. Solov’Yov, A. Korotitskiy, E. Gutmanas, I. Gotman, E. Rabkin, S. Psakh’E, L. Dluhoš, M. Seefeldt, A. Smolin, Nanostructured titanium-based materials for medical implants: Modeling and development, Mater. Sci. Eng. R Reports. 81 (2014) 1–19. https://doi.org/10.1016/j.mser.2014.04.002
[26] C.M.A. Rego, A.F. Francisco, C.N. Boeno, M. V. Paloschi, J.A. Lopes, M.D.S. Silva, H.M. Santana, S.N. Serrath, J.E. Rodrigues, C.T.L. Lemos, R.S.S. Dutra, J.N. da Cruz, C.B.R. dos Santos, S. da S. Setúbal, M.R.M. Fontes, A.M. Soares, W.L. Pires, J.P. Zuliani, Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom, Sci. Rep. 12 (2022) 1–17. https://doi.org/10.1038/s41598-022-08735-7
[27] M.P. Nikolova, M.S. Chavali, Metal oxide nanoparticles as biomedical materials, Biomimetics. 5 (2020) 27. https://doi.org/10.3390/BIOMIMETICS5020027
[28] S.Y. Choi, M.S. Song, P.D. Ryu, A.T.N. Lam, S.W. Joo, S.Y. Lee, Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway, Int. J. Nanomedicine. 10 (2015) 4383–4392. https://doi.org/10.2147/IJN.S78775
[29] C. Yi, D. Liu, C.C. Fong, J. Zhang, M. Yang, Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway, ACS Nano. 4 (2010) 6439–6448. https://doi.org/10.1021/nn101373r
[30] H. Samadian, H. Khastar, A. Ehterami, M. Salehi, Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study, Sci. Rep. 11 (2021) 1–11. https://doi.org/10.1038/s41598-021-93367-6
[31] Y. Zhang, P. Wang, Y. Wang, J. Li, D. Qiao, R. Chen, W. Yang, F. Yan, Gold nanoparticles promote the bone regeneration of periodontal ligament stem cell sheets through activation of autophagy, Int. J. Nanomedicine. 16 (2021) 61–73. https://doi.org/10.2147/IJN.S282246
[32] Y. Zhang, N. Kong, Y. Zhang, W. Yang, F. Yan, Size-dependent effects of gold nanoparticles on osteogenic differentiation of human periodontal ligament progenitor cells, Theranostics. 7 (2017) 1214–1224. https://doi.org/10.7150/thno.17252
[33] N.L. Rosi, D.A. Giljohann, C.S. Thaxton, A.K.R. Lytton-Jean, M.S. Han, C.A. Mirkin, Oligonucleotide-modified gold nanoparticles for infracellular gene regulation, Science (80-. ). 312 (2006) 1027–1030. https://doi.org/10.1126/science.1125559
[34] S. Singh, A. Gupta, I. Qayoom, A.K. Teotia, S. Gupta, P. Padmanabhan, A. Dev, A. Kumar, Biofabrication of gold nanoparticles with bone remodeling potential: an in vitro and in vivo assessment, J. Nanoparticle Res. 22 (2020) 1–15. https://doi.org/10.1007/s11051-020-04883-x
[35] D.N. Heo, W.K. Ko, M.S. Bae, J.B. Lee, D.W. Lee, W. Byun, C.H. Lee, E.C. Kim, B.Y. Jung, I.K. Kwon, Enhanced bone regeneration with a gold nanoparticle-hydrogel complex, J. Mater. Chem. B. 2 (2014) 1584–1593. https://doi.org/10.1039/c3tb21246g
[36] H. Liang, C. Jin, L. Ma, X. Feng, X. Deng, S. Wu, X. Liu, C. Yang, Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation, ACS Appl. Mater. Interfaces. 11 (2019) 41758–41769. https://doi.org/10.1021/acsami.9b16848
[37] C. Huang, J. Dong, Y. Zhang, S. Chai, X. Wang, S. Kang, D. Yu, P. Wang, Q. Jiang, Gold Nanoparticles-Loaded Polyvinylpyrrolidone/Ethylcellulose Coaxial Electrospun Nanofibers with Enhanced Osteogenic Capability for Bone Tissue Regeneration, Mater. Des. 212 (2021) 110240. https://doi.org/10.1016/j.matdes.2021.110240
[38] C. Huang, Q. Ye, J. Dong, L. Li, M. Wang, Y. Zhang, Y. Zhang, X. Wang, P. Wang, Q. Jiang, Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation, Smart Mater. Med. 4 (2023) 1–14. https://doi.org/10.1016/j.smaim.2022.06.001
[39] B. Murugesan, N. Pandiyan, M. Arumugam, J. Sonamuthu, S. Samayanan, C. Yurong, Y. Juming, S. Mahalingam, Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering, Appl. Surf. Sci. 510 (2020) 145403. https://doi.org/10.1016/j.apsusc.2020.145403
[40] G. Calabrese, S. Petralia, C. Fabbi, S. Forte, D. Franco, S. Guglielmino, E. Esposito, S. Cuzzocrea, F. Traina, S. Conoci, Au, Pd and maghemite nanofunctionalized hydroxyapatite scaffolds for bone regeneration, Regen. Biomater. 7 (2020) 461–469. https://doi.org/10.1093/rb/rbaa033
[41] F. Heidari, F.S. Tabatabaei, M. Razavi, R. Bazargan-Lari, M. Tavangar, G.E. Romanos, D. Vashaee, L. Tayebi, 3D construct of hydroxyapatite/zinc oxide/palladium nanocomposite scaffold for bone tissue engineering, J. Mater. Sci. Mater. Med. 31 (2020) 1–14. https://doi.org/10.1007/s10856-020-06409-2
[42] X. Zhang, G. Cheng, X. Xing, J. Liu, Y. Cheng, T. Ye, Q. Wang, X. Xiao, Z. Li, H. Deng, Near-Infrared Light-Triggered Porous AuPd Alloy Nanoparticles to Produce Mild Localized Heat to Accelerate Bone Regeneration, J. Phys. Chem. Lett. 10 (2019) 4185–4191. https://doi.org/10.1021/acs.jpclett.9b01735
[43] M. Rai, A.P. Ingle, S. Birla, A. Yadav, C.A. Dos Santos, Strategic role of selected noble metal nanoparticles in medicine, Crit. Rev. Microbiol. 42 (2016) 696–719. https://doi.org/10.3109/1040841X.2015.1018131
[44] W.K. Kim, J.C. Kim, H.J. Park, O.J. Sul, M.H. Lee, J.S. Kim, H.S. Choi, Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis, Exp. Mol. Med. 44 (2012) 432–439. https://doi.org/10.3858/emm.2012.44.7.048
[45] K. Eid, A. Eldesouky, A. Fahmy, A. Shahat, R. AbdElaal, Calcium Phosphate Scaffold Loaded with Platinum Nanoparticles for Bone Allograft, Am. J. Biomed. Sci. 5 (2013) 242–249. https://doi.org/10.5099/aj130400242
[46] J. Radwan-Pragłowska, Ł. Janus, M. Piatkowski, D. Bogdał, D. Matysek, 3D hierarchical, nanostructured chitosan/PLA/HA scaffolds doped with TiO2/Au/Pt NPs with tunable properties for guided bone tissue engineering, Polymers (Basel). 12 (2020) 792. https://doi.org/10.3390/POLYM12040792
[47] N. Fattahi, A. Ramazani, V. Kinzhybalo, Imidazole-Functionalized Fe3O4/Chloro-Silane Core-Shell Nanoparticles: an Efficient Heterogeneous Organocatalyst for Esterification Reaction, Silicon. 11 (2019) 1745–1754. https://doi.org/10.1007/s12633-017-9757-0
[48] N. Fattahi, A. Ramazani, H. Ahankar, P.A. Asiabi, V. Kinzhybalo, Tetramethylguanidine-Functionalized Fe3O4/ Chloro-Silane Core-Shell Nanoparticles: an Efficient Heterogeneous and Reusable Organocatalyst for Aldol Reaction, Silicon. 11 (2019) 1441–1450. https://doi.org/10.1007/s12633-018-9954-5
[49] D. Zahn, J. Landers, J. Buchwald, M. Diegel, S. Salamon, R. Müller, M. Köhler, G. Ecke, H. Wende, S. Dutz, Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications, Nanomaterials. 12 (2022) 343. https://doi.org/10.3390/nano12030343
[50] J. Peng, J. Zhao, Y. Long, Y. Xie, J. Nie, L. Chen, Magnetic Materials in Promoting Bone Regeneration, Front. Mater. 6 (2019) 268. https://doi.org/10.3389/fmats.2019.00268
[51] Y. Li, D. Ye, M. Li, M. Ma, N. Gu, Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration, ChemPhysChem. 19 (2018) 1965–1979. https://doi.org/10.1002/cphc.201701294
[52] A. Scharf, S. Holmes, M. Thoresen, J. Mumaw, A. Stumpf, J. Peroni, Superparamagnetic iron oxide nanoparticles as a means to track mesenchymal stem cells in a large animal model of tendon injury, Contrast Media Mol. Imaging. 10 (2015) 388–397. https://doi.org/10.1002/cmmi.1642
[53] J. Huang, D. Wang, J. Chen, W. Liu, L. Duan, W. You, W. Zhu, J. Xiong, D. Wang, Osteogenic differentiation of bone marrow mesenchymal stem cells by magnetic nanoparticle composite scaffolds under a pulsed electromagnetic field, Saudi Pharm. J. 25 (2017) 575–579. https://doi.org/10.1016/j.jsps.2017.04.026
[54] P. Jiang, Y. Zhang, C. Zhu, W. Zhang, Z. Mao, C. Gao, Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field, Acta Biomater. 46 (2016) 141–150. https://doi.org/10.1016/j.actbio.2016.09.020
[55] H.M. Yun, S.J. Ahn, K.R. Park, M.J. Kim, J.J. Kim, G.Z. Jin, H.W. Kim, E.C. Kim, Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation, Biomaterials. 85 (2016) 88–98. https://doi.org/10.1016/j.biomaterials.2016.01.035
[56] A. Bari, N. Bloise, S. Fiorilli, G. Novajra, M. Vallet-Regí, G. Bruni, A. Torres-Pardo, J.M. González-Calbet, L. Visai, C. Vitale-Brovarone, Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration, Acta Biomater. 55 (2017) 493–504. https://doi.org/10.1016/j.actbio.2017.04.012
[57] S. D’Mello, S. Elangovan, L. Hong, R.D. Ross, D.R. Sumner, A.K. Salem, Incorporation of copper into chitosan scaffolds promotes bone regeneration in rat calvarial defects, J. Biomed. Mater. Res. – Part B Appl. Biomater. 103 (2015) 1044–1049. https://doi.org/10.1002/jbm.b.33290
[58] Z. Lin, Y. Cao, J. Zou, F. Zhu, Y. Gao, X. Zheng, H. Wang, T. Zhang, T. Wu, Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement, Mater. Sci. Eng. C. 114 (2020) 111032. https://doi.org/10.1016/j.msec.2020.111032
[59] Y. Li, Y. Yang, Y. Qing, R. Li, X. Tang, D. Guo, Y. Qin, Enhancing zno-np antibacterial and osteogenesis properties in orthopedic applications: A review, Int. J. Nanomedicine. 15 (2020) 6247–6262. https://doi.org/10.2147/IJN.S262876
[60] S. Ghosh, T.J. Webster, Metallic nanoscaffolds as osteogenic promoters: Advances, challenges and scope, Metals (Basel). 11 (2021) 1356. https://doi.org/10.3390/met11091356
[61] A. Khader, T.L. Arinzeh, Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells, Biotechnol. Bioeng. 117 (2020) 194–209. https://doi.org/10.1002/bit.27173
[62] U. Gröber, J. Schmidt, K. Kisters, Magnesium in prevention and therapy, Nutrients. 7 (2015) 8199–8226. https://doi.org/10.3390/nu7095388
[63] K. Zhang, S. Lin, Q. Feng, C. Dong, Y. Yang, G. Li, L. Bian, Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration, Acta Biomater. 64 (2017) 389–400. https://doi.org/10.1016/j.actbio.2017.09.039
[64] N. Safari, N. Golafshan, M. Kharaziha, M. Reza Toroghinejad, L. Utomo, J. Malda, M. Castilho, Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repair, ACS Biomater. Sci. Eng. 6 (2020) 6253–6262. https://doi.org/10.1021/acsbiomaterials.0c00613
[65] K.S. Park, B.J. Kim, E. Lih, W. Park, S.H. Lee, Y.K. Joung, D.K. Han, Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold–mediated chondrogenesis, Acta Biomater. 73 (2018) 204–216. https://doi.org/10.1016/j.actbio.2018.04.022
[66] M. Petretta, A. Gambardella, M. Boi, M. Berni, C. Cavallo, G. Marchiori, M.C. Maltarello, D. Bellucci, M. Fini, N. Baldini, B. Grigolo, V. Cannillo, Composite scaffolds for bone tissue regeneration based on pcl and mg-containing bioactive glasses, Biology (Basel). 10 (2021) 398. https://doi.org/10.3390/biology10050398
[67] N. Raura, A. Garg, A. Arora, M. Roma, Nanoparticle technology and its implications in endodontics: a review, Biomater. Res. 24 (2020) 1–8. https://doi.org/10.1186/s40824-020-00198-z
[68] C.L. Wetteland, N.Y.T. Nguyen, H. Liu, Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles, Acta Biomater. 35 (2016) 341–356. https://doi.org/10.1016/j.actbio.2016.02.032
[69] S. Çeşmeli, C. Biray Avci, Application of titanium dioxide (TiO2) nanoparticles in cancer therapies, J. Drug Target. 27 (2019) 762–766. https://doi.org/10.1080/1061186X.2018.1527338
[70] N. Johari, H.R. Madaah Hosseini, A. Samadikuchaksaraei, Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering, Mater. Sci. Eng. C. 79 (2017) 783–792. https://doi.org/10.1016/j.msec.2017.05.105
[71] G. Nechifor, E.E. Totu, A.C. Nechifor, I. Isildak, O. Oprea, C.M. Cristache, Non-resorbable nanocomposite membranes for guided bone regeneration based on polysulfone-quartz fiber grafted with nano-TiO2, Nanomaterials. 9 (2019) 985. https://doi.org/10.3390/nano9070985
[72] E. Bressan, L. Ferroni, C. Gardin, G. Bellin, L. Sbricoli, S. Sivolella, G. Brunello, D. Schwartz-Arad, E. Mijiritsky, M. Penarrocha, D. Penarrocha, C. Taccioli, M. Tatullo, A. Piattelli, B. Zavan, Metal nanoparticles released from dental implant surfaces: Potential contribution to chronic inflammation and peri-implant bone loss, Materials (Basel). 12 (2019) 2036. https://doi.org/10.3390/ma12122036
[73] G.S. Baird, Ionized calcium, Clin. Chim. Acta. 412 (2011) 696–701. https://doi.org/10.1016/j.cca.2011.01.004
[74] J. Sawai, H. Shiga, Kinetic analysis of the antifungal activity of heated scallop-shell powder against Trichophyton and its possible application to the treatment of dermatophytosis, Biocontrol Sci. 11 (2006) 125–128. https://doi.org/10.4265/bio.11.125
[75] C. Silva, F. Bobillier, D. Canales, F.A. Sepúlveda, A. Cament, N. Amigo, L.M. Rivas, M.T. Ulloa, P. Reyes, J.A. Ortiz, T. Gómez, C. Loyo, P.A. Zapata, Mechanical and antimicrobial polyethylene composites with CaO nanoparticles, Polymers (Basel). 12 (2020) 2132. https://doi.org/10.3390/POLYM12092132
[76] E.A. Münchow, D. Pankajakshan, M.T.P. Albuquerque, K. Kamocki, E. Piva, R.L. Gregory, M.C. Bottino, Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering, Clin. Oral Investig. 20 (2016) 1921–1933. https://doi.org/10.1007/s00784-015-1671-5
[77] R. Eivazzadeh-Keihan, E. Bahojb Noruzi, K. Khanmohammadi Chenab, A. Jafari, F. Radinekiyan, S.M. Hashemi, F. Ahmadpour, A. Behboudi, J. Mosafer, A. Mokhtarzadeh, A. Maleki, M.R. Hamblin, Metal-based nanoparticles for bone tissue engineering, J. Tissue Eng. Regen. Med. 14 (2020) 1687–1714. https://doi.org/10.1002/term.3131
[78] B. Yu, S. Fu, Z. Kang, M. Zhu, H. Ding, T. Luo, Y. Zhu, Y. Zhang, Enhanced bone regeneration of 3D printed β-Ca2SiO4 scaffolds by aluminum ions solid solution, Ceram. Int. 46 (2020) 7783–7791. https://doi.org/10.1016/j.ceramint.2019.11.282
[79] E. Toloue, S. Karbasi, H. Salehi, M. Rafienia, Evaluation of mechanical properties and cell viability of poly (3-hydroxybutyrate)-chitosan/Al2O3nanocomposite scaffold for cartilage tissue engineering, J. Med. Signals Sens. 9 (2019) 111–116. https://doi.org/10.4103/jmss.JMSS_56_18
[80] H. Li, P. Xia, S. Pan, Z. Qi, C. Fu, Z. Yu, W. Kong, Y. Chang, K. Wang, D. Wu, X. Yang, The advances of ceria nanoparticles for biomedical applications in orthopaedics, Int. J. Nanomedicine. 15 (2020) 7199–7214. https://doi.org/10.2147/IJN.S270229
[81] F. Wei, C.J. Neal, T.S. Sakthivel, T. Kean, S. Seal, M.J. Coathup, Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis, Mater. Sci. Eng. C. 124 (2021) 112041. https://doi.org/10.1016/j.msec.2021.112041
[82] X. Li, M. Qi, X. Sun, M.D. Weir, F.R. Tay, T.W. Oates, B. Dong, Y. Zhou, L. Wang, H.H.K. Xu, Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities, Acta Biomater. 94 (2019) 627–643. https://doi.org/10.1016/j.actbio.2019.06.023
[83] S.D. Purohit, H. Singh, R. Bhaskar, I. Yadav, C.F. Chou, M.K. Gupta, N.C. Mishra, Gelatin—alginate—cerium oxide nanocomposite scaffold for bone regeneration, Mater. Sci. Eng. C. 116 (2020) 111111. https://doi.org/10.1016/j.msec.2020.111111
[84] A. V. Lukin, G.I. Lukina, A. V. Volkov, A.E. Baranchikov, V.K. Ivanov, A.A. Prokopov, Morphometry Results of Formed Osteodefects When Using Nanocrystalline CeO2 in the Early Stages of Regeneration, Int. J. Dent. 2019 (2019). https://doi.org/10.1155/2019/9416381
[85] G.B. Tomar, J.R. Dave, S.T. Mhaske, S. Mamidwar, P.K. Makar, Applications of Nanomaterials in Bone Tissue Engineering, Nanotechnol. Life Sci. 10 (2020) 209–250. https://doi.org/10.1007/978-3-030-41464-1_10
[86] N.C. da R. Galucio, D. de A. Moysés, J.R.S. Pina, P.S.B. Marinho, P.C. Gomes Júnior, J.N. Cruz, V.V. Vale, A.S. Khayat, A.M. do R. Marinho, Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn, Arab. J. Chem. 15 (2022) 103589. https://doi.org/10.1016/j.arabjc.2021.103589
[87] L. Grausova, L. Bacakova, A. Kromka, S. Potocky, M. Vanecek, M. Nesladek, V. Lisa, Nanodiamond as promising material for bone tissue engineering, J. Nanosci. Nanotechnol. 9 (2009) 3524–3534. https://doi.org/10.1166/jnn.2009.NS26
[88] L. Moore, M. Gatica, H. Kim, E. Osawa, D. Ho, Multi-protein delivery by nanodiamonds promotes bone formation, J. Dent. Res. 92 (2013) 976–981. https://doi.org/10.1177/0022034513504952
[89] S. Choi, S.H. Noh, C.O. Lim, H.J. Kim, H.S. Jo, J.S. Min, K. Park, S.E. Kim, Icariin-functionalized nanodiamonds to enhance osteogenic capacity in vitro, Nanomaterials. 10 (2020) 1–14. https://doi.org/10.3390/nano10102071
[90] S. Prylutska, R. Bilyy, T. Shkandina, D. Rotko, A. Bychko, V. Cherepanov, R. Stoika, V. Rybalchenko, Y. Prylutskyy, N. Tsierkezos, U. Ritter, Comparative study of membranotropic action of single- and multi-walled carbon nanotubes, J. Biosci. Bioeng. 115 (2013) 674–679. https://doi.org/10.1016/j.jbiosc.2012.12.016
[91] B. Zhao, H. Hu, S.K. Mandal, R.C. Haddon, A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes, Chem. Mater. 17 (2005) 3235–3241. https://doi.org/10.1021/cm0500399
[92] D. Meng, J. Ioannou, A.R. Boccaccini, Bioglass®-based scaffolds with carbon nanotube coating for bone tissue engineering, J. Mater. Sci. Mater. Med. 20 (2009) 2139–2144. https://doi.org/10.1007/s10856-009-3770-9
[93] J. Venkatesan, S.K. Kim, Stimulation of minerals by carbon nanotube grafted glucosamine in mouse mesenchymal stem cells for bone tissue engineering, J. Biomed. Nanotechnol. 8 (2012) 676–685. https://doi.org/10.1166/jbn.2012.1410
[94] A. Fonseca-García, J.D. Mota-Morales, I.A. Quintero-Ortega, Z.Y. García-Carvajal, V. Martínez-Lõpez, E. Ruvalcaba, C. Landa-Solís, L. Solis, C. Ibarra, M.C. Gutiérrez, M. Terrones, I.C. Sanchez, F. Del Monte, M.C. Velasquillo, G. Luna-Bárcenas, Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds, J. Biomed. Mater. Res. – Part A. 102 (2014) 3341–3351. https://doi.org/10.1002/jbm.a.34893
[95] N. Jamilpour, A. Fereidoon, G. Rouhi, The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process, J. Biomed. Nanotechnol. 7 (2011) 542–548. https://doi.org/10.1166/jbn.2011.1319
[96] F. Mei, J. Zhong, X. Yang, X. Ouyang, S. Zhang, X. Hu, Q. Ma, J. Lu, S. Ryu, X. Deng, Improved biological characteristics of poly(L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles, Biomacromolecules. 8 (2007) 3729–3735. https://doi.org/10.1021/bm7006295
[97] H. Zhang, Electrospun poly (lactic-co-glycolic acid)/ multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration, J. Bioact. Compat. Polym. 26 (2011) 347–362. https://doi.org/10.1177/0883911511413450
[98] S.W. Crowder, D. Prasai, R. Rath, D.A. Balikov, H. Bae, K.I. Bolotin, H.J. Sung, Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells, Nanoscale. 5 (2013) 4171–4176. https://doi.org/10.1039/c3nr00803g
[99] Y. Chen, Y. Qi, Z. Tai, X. Yan, F. Zhu, Q. Xue, Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, Eur. Polym. J. 48 (2012) 1026–1033. https://doi.org/10.1016/j.eurpolymj.2012.03.011
[100] S. Das, A.S. Wajid, S.K. Bhattacharia, M.D. Wilting, I. V. Rivero, M.J. Green, Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene, J. Appl. Polym. Sci. 128 (2013) 4040–4046. https://doi.org/10.1002/app.38694
[101] D.A. Heredia, A.M. Durantini, J.E. Durantini, E.N. Durantini, Fullerene C60 derivatives as antimicrobial photodynamic agents, J. Photochem. Photobiol. C Photochem. Rev. 51 (2022) 100471. https://doi.org/10.1016/j.jphotochemrev.2021.100471
[102] L. Bacakova, L. Grausova, J. Vacik, A. Fraczek, S. Blazewicz, A. Kromka, M. Vanecek, V. Svorcik, Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles, Diam. Relat. Mater. 16 (2007) 2133–2140. https://doi.org/10.1016/j.diamond.2007.07.015
[103] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44 (2015) 362–381. https://doi.org/10.1039/c4cs00269e
[104] C. Ren, X. Hao, L. Wang, Y. Hu, L. Meng, S. Zheng, F. Ren, W. Bu, H. Wang, D. Li, K. Zhang, H. Sun, Metformin Carbon Dots for Promoting Periodontal Bone Regeneration via Activation of ERK/AMPK Pathway, Adv. Healthc. Mater. 10 (2021) 2100196. https://doi.org/10.1002/adhm.202100196
[105] N. Jin, N. Jin, Z. Wang, L. Liu, L. Meng, D. Li, X. Li, D. Zhou, J. Liu, W. Bu, H. Sun, B. Yang, Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2α-ATF4 pathway, Biomater. Sci. 8 (2020) 2840–2852. https://doi.org/10.1039/d0bm00424c
[106] Q. Yang, H. Yin, T. Xu, D. Zhu, J. Yin, Y. Chen, X. Yu, J. Gao, C. Zhang, Y. Chen, Y. Gao, Engineering 2D Mesoporous Silica@MXene-Integrated 3D-Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO-Augmented Bone Regeneration, Small. 16 (2020) 1906814. https://doi.org/10.1002/smll.201906814
[107] C. Xu, L. Xiao, Y. Cao, Y. He, C. Lei, Y. Xiao, W. Sun, S. Ahadian, X. Zhou, A. Khademhosseini, Q. Ye, Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration, Nano Res. 13 (2020) 2323–2331. https://doi.org/10.1007/s12274-020-2783-z
[108] N. Shadjou, M. Hasanzadeh, Silica-based mesoporous nanobiomaterials as promoter of bone regeneration process, J. Biomed. Mater. Res. – Part A. 103 (2015) 3703–3716. https://doi.org/10.1002/jbm.a.35504
[109] Y. Zhao, Z. Cui, B. Liu, J. Xiang, D. Qiu, Y. Tian, X. Qu, Z. Yang, An Injectable Strong Hydrogel for Bone Reconstruction, Adv. Healthc. Mater. 8 (2019) 1900709. https://doi.org/10.1002/adhm.201900709
[110] B. Gaihre, B. Lecka-Czernik, A.C. Jayasuriya, Injectable nanosilica–chitosan microparticles for bone regeneration applications, J. Biomater. Appl. 32 (2018) 813–825. https://doi.org/10.1177/0885328217741523
[111] Z. Shi, Y. Xu, R. Mulatibieke, Q. Zhong, X. Pan, Y. Chen, Q. Lian, X. Luo, Z. Shi, Q. Zhu, Nano-silicate-reinforced and SDF-1α-loaded gelatin-methacryloyl hydrogel for bone tissue engineering, Int. J. Nanomedicine. 15 (2020) 9337
[112] H. Maleki, M.A. Shahbazi, S. Montes, S.H. Hosseini, M.R. Eskandari, S. Zaunschirm, T. Verwanger, S. Mathur, B. Milow, B. Krammer, N. Hüsing, Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration, ACS Appl. Mater. Interfaces. 11 (2019) 17256–17269. https://doi.org/10.1021/acsami.9b04283
[113] F.S. Alves, J. de A. Rodrigues Do Rego, M.L. Da Costa, L.F. Lobato Da Silva, R.A. Da Costa, J.N. Cruz, D.D.S.B. Brasil, Spectroscopic methods and in silico analyses using density functional theory to characterize and identify piperine alkaloid crystals isolated from pepper (Piper Nigrum L.), J. Biomol. Struct. Dyn. 38 (2020) 2792–2799. https://doi.org/10.1080/07391102.2019.1639547