Processes of Synthesis and Characterization of Silver Nanoparticles with Antimicrobial Action and their Future Prospective


Processes of Synthesis and Characterization of Silver Nanoparticles with Antimicrobial Action and their Future Prospective

Vishnu Vardhan Palem, Gokul Paramasivam, Nibedita Dey, Anu Swedha Ananthan

The discovery of novel therapies is required due to the stark rise in microbial resistance to currently available conventional antibiotics, which poses a significant obstacle to the effective management of infectious diseases. Nanomaterials between 1 and 100 nm in size have recently become effective antibacterial agents. In particular, several classes of antimicrobial nanomaterials and nanosized carriers for antibiotic delivery have demonstrated their efficacy for treating infectious diseases, including antibiotic-resistant ones, in vitro and in animal models. Because of their high surface area-to-volume ratios, these materials can provide better therapy than conventional drugs and have new mechanical, chemical, electrical, optical, magnetic, electro-optical, and magneto-optical properties. So, nanoparticles have been proven to be fascinating in the fight against bacteria. In this chapter, we will go into detail about the various characteristics of microorganisms and how they differ across each strain. The toxicity mechanisms change depending on the stain. Even the effectiveness of nanomaterials to treat different bacteria and their defence mechanisms varies depending on strains, particularly the composition of cell walls, the makeup of the enzymes, and other factors. As a result, a perspective on nanomaterials in the microbial world, a method to combat drug resistance by tagging antibiotics in nanomaterials, as well as predictions for their future in science.

Nanoparticles, Antibacterial Action, Microbial Resistance, NP-Assisted Drug Delivery, Nanoparticle-Assisted Therapy

Published online , 31 pages

Citation: Vishnu Vardhan Palem, Gokul Paramasivam, Nibedita Dey, Anu Swedha Ananthan, Processes of Synthesis and Characterization of Silver Nanoparticles with Antimicrobial Action and their Future Prospective, Materials Research Proceedings, Vol. 145, pp 131-161, 2023


Part of the book on Nanobiomaterials

[1] B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures: The case of silver, Chem. – A Eur. J. 11 (2005) 454–463.
[2] J.R. Anacona, J. Santaella, R.K.R. Al-shemary, J. Amenta, A. Otero, C. Ramos, F. Celis, Ceftriaxone-based Schiff base transition metal(II) complexes. Synthesis, characterization, bacterial toxicity, and DFT calculations. Enhanced antibacterial activity of a novel Zn(II) complex against S. aureus and E. coli, J. Inorg. Biochem. 223 (2021) 111519.
[3] K. Kalimuthu, R. Suresh Babu, D. Venkataraman, M. Bilal, S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus licheniformis, Colloids Surfaces B Biointerfaces. 65 (2008) 150–153.
[4] K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, G. Sangiliyandi, Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis, Mater. Lett. 62 (2008) 4411–4413.
[5] S.S. Nath, D. Chakdar, G. Gope, D.K. Avasthi, Effect of 100 MeV nickel ions on silica coated ZnS quantum dots, J. Nanoelectron. Optoelectron. 3 (2008) 180–183.
[6] S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chem. 13 (2011) 2638–2650.
[7] S. Nagaraja, S.S. Ahmed, D.R. Bharathi, P. Goudanavar, K.M. Rupesh, S. Fattepur, G. Meravanige, A. Shariff, P.N. Shiroorkar, M. Habeebuddin, M. Telsang, Green Synthesis and Characterization of Silver Nanoparticles of Psidium guajava Leaf Extract and Evaluation for Its Antidiabetic Activity, Molecules. 27 (2022) 4336.
[8] H. Müller, Optical Properties of Metal Clusters, Zeitschrift Für Phys. Chemie. 194 (1996) 278–279.
[9] N. Chauhan, A.K. Tyagi, P. Kumar, A. Malik, Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens, Front. Microbiol. 7 (2016) 1748.
[10] M.A. Hossain, B. Paul, K.A. Khan, M. Paul, M.A. Mamun, M.E. Quayum, Green synthesis and characterization of silver nanoparticles by using Bryophyllum pinnatum and the evaluation of its power generation activities on bio-electrochemical cell, Mater. Chem. Phys. 282 (2022) 125943.
[11] H. Bedford, D. Elliman, Concerns about immunisation, Br. Med. J. 320 (2000) 240–243.
[12] D.C. Tien, K.H. Tseng, C.Y. Liao, J.C. Huang, T.T. Tsung, Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method, J. Alloys Compd. 463 (2008) 408–411.
[13] P. Panchal, E. Ogunsona, T. Mekonnen, Trends in advanced functional material applications of nanocellulose, Processes. 7 (2019) 10.
[14] N. Vigneshwaran, A.A. Kathe, P. V. Varadarajan, R.P. Nachane, R.H. Balasubramanya, Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium, Colloids Surfaces B Biointerfaces. 53 (2006) 55–59.
[15] P. Hinterdorfer, M.F. Garcia-Parajo, Y.F. Dufrêne, Single-molecule imaging of cell surfaces using near-field nanoscopy, Acc. Chem. Res. 45 (2012) 327–336.
[16] V. Sambhy, M.M. MacBride, B.R. Peterson, A. Sen, Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials, J. Am. Chem. Soc. 128 (2006) 9798–9808.
[17] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science (80-. ). 298 (2002) 2176–2179.
[18] W. Russin, Scanning Electron Microscopy for the Life Sciences. Heide Schatten (Ed.). Cambridge University Press, Cambridge, UK, 2013, 261 pages. ISBN: 978-0-521-19599-7 (Hardcover), Microsc. Microanal. 20 (2014) 313–313.
[19] S. Iravani, Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects, Int. Sch. Res. Not. 2014 (2014) 1–18.
[20] H. Cao, Toward selectively toxic silver nanoparticles, CRC Press, 2017.
[21] S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy, RSC Adv. 4 (2014) 3974–3983.
[22] C.W. Hall, T.F. Mah, Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria, FEMS Microbiol. Rev. 41 (2017) 276–301.
[23] S. Anees Ahmad, S. Sachi Das, A. Khatoon, M. Tahir Ansari, M. Afzal, M. Saquib Hasnain, A. Kumar Nayak, Bactericidal activity of silver nanoparticles: A mechanistic review, Mater. Sci. Energy Technol. 3 (2020) 756–769.
[24] A.R. Vilchis-Nestor, V. Sánchez-Mendieta, M.A. Camacho-López, R.M. Gómez-Espinosa, M.A. Camacho-López, J.A. Arenas-Alatorre, Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract, Mater. Lett. 62 (2008) 3103–3105.
[25] C. Willyard, The drug-resistant bacteria that pose the greatest health threats, Nature. 543 (2017) 15.
[26] D. Kim, S. Jeong, J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection, Nanotechnology. 17 (2006) 4019–4024.
[27] E. Weir, A. Lawlor, A. Whelan, F. Regan, The use of nanoparticles in anti-microbial materials and their characterization, Analyst. 133 (2008) 835–845.
[28] L. Nelsonjoseph, B. Vishnupriya, Ramasamy, D. Bharathi, S. Thangabalu, P. Rehna, Synthesis and characterization of silver nanoparticles using Acremonium borodinense and their anti-bacterial and hemolytic activity, Biocatal. Agric. Biotechnol. 39 (2022) 102222.
[29] P. Jena, M. Bhattacharya, G. Bhattacharjee, B. Satpati, P. Mukherjee, D. Senapati, R. Srinivasan, Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB, Nanoscale. 12 (2020) 3731–3749.
[30] D. Karageorgou, P. Zygouri, T. Tsakiridis, M.A. Hammami, N. Chalmpes, M. Subrati, I. Sainis, K. Spyrou, P. Katapodis, D. Gournis, H. Stamatis, Green Synthesis and Characterization of Silver Nanoparticles with High Antibacterial Activity Using Cell Extracts of Cyanobacterium Pseudanabaena/Limnothrix sp., Nanomaterials. 12 (2022) 2296.
[31] D. Kim, S. Jeong, J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection, Nanotechnology. 17 (2006) 4019–4024.
[32] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surfaces B Biointerfaces. 28 (2003) 313–318.
[33] P. Hobson-West, Understanding vaccination resistance: Moving beyond risk, Heal. Risk Soc. 5 (2003) 273–283.
[34] M. Sastry, K.S. Mayya, K. Bandyopadhyay, pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles, Colloids Surfaces A Physicochem. Eng. Asp. 127 (1997) 221–228.
[35] J.S. McQuillan, H. Groenaga Infante, E. Stokes, A.M. Shaw, Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12, Nanotoxicology. 6 (2012) 857–866.
[36] S. Thomas, P. McCubbin, A comparison of the antimicrobial effects of four silver-containing dressings on three organisms., J. Wound Care. 12 (2003) 101–107.
[37] M.M.O. Rashid, K.N. Akhter, J.A. Chowdhury, F. Hossen, M.S. Hussain, M.T. Hossain, Characterization of phytoconstituents and evaluation of antimicrobial activity of silver-extract nanoparticles synthesized from Momordica charantia fruit extract, BMC Complement. Altern. Med. 17 (2017) 336.
[38] A. Heidari, Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluctuation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing- Incidence X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation, Oncol. Res. Rev. 1 (2017).
[39] T. Bruna, F. Maldonado-Bravo, P. Jara, N. Caro, Silver nanoparticles and their antibacterial applications, Int. J. Mol. Sci. 22 (2021) 7202.
[40] S.T. Dubas, P. Kumlangdudsana, P. Potiyaraj, Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers, Colloids Surfaces A Physicochem. Eng. Asp. 289 (2006) 105–109.
[41] M. Rawat, a Review on Green Synthesis and Characterization of Silver Nanoparticles and Their Applications: a Green Nanoworld., World J. Pharm. Pharm. Sci. (2016) 730–762.
[42] F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand, D. Häbich, Antibakterielle Naturstoffe in der medizinischen Chemie – Exodus oder Renaissance?, Angew. Chemie. 118 (2006) 5194–5254.
[43] C. Gopu, P. Chirumamilla, S. Kagithoju, S. Taduri, Green synthesis of silver nanoparticles using Momordica cymbalaria aqueous leaf extracts and screening of their antimicrobial activity: AgNPs studies in Momordica cymbalaria, Proc. Natl. Acad. Sci. India Sect. B – Biol. Sci. 92 (2022) 771–782.
[44] A. Syed, S. Saraswati, G.C. Kundu, A. Ahmad, Biological synthesis of silver nanoparticles using the fungus Humicola sp. And evaluation of their cytoxicity using normal and cancer cell lines, Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 114 (2013) 144–147.
[45] N. Vigneshwaran, N.M. Ashtaputre, P. V. Varadarajan, R.P. Nachane, K.M. Paralikar, R.H. Balasubramanya, Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus, Mater. Lett. 61 (2007) 1413–1418.
[46] Silver Nanoparticles – Fabrication, Characterization and Applications, Silver Nanoparticles – Fabr. Charact. Appl. (2018).
[47] S. V. Kyriacou, W.J. Brownlow, X.H.N. Xu, Using Nanoparticle Optics Assay for Direct Observation of the Function of Antimicrobial Agents in Single Live Bacterial Cells, Biochemistry. 43 (2004) 140–147.
[48] W. He, H.K. Kim, W.G. Wamer, D. Melka, J.H. Callahan, J.J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc. 136 (2014) 750–757.
[49] M. Farré, D. Barceló, Introduction to the analysis and risk of nanomaterials in environmental and food samples, Compr. Anal. Chem. 59 (2012) 1–32.
[50] N.A. Begum, S. Mondal, S. Basu, R.A. Laskar, D. Mandal, Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts, Colloids Surfaces B Biointerfaces. 71 (2009) 113–118.
[51] S. Gurunathan, J.W. Han, D.N. Kwon, J.H. Kim, Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria, Nanoscale Res. Lett. 9 (2014) 1–17.
[52] Pr. Shankar, Book review: Tackling drug-resistant infections globally, Arch. Pharm. Pract. 7 (2016) 110.
[53] X. Pan, Y. Wang, Z. Chen, D. Pan, Y. Cheng, Z. Liu, Z. Lin, X. Guan, Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2, ACS Appl. Mater. Interfaces. 5 (2013) 1137–1142.
[54] J.M. V. Makabenta, A. Nabawy, C.H. Li, S. Schmidt-Malan, R. Patel, V.M. Rotello, Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections, Nat. Rev. Microbiol. 19 (2021) 23–36.
[55] S.S. Alharthi, T. Gomathi, J.J. Joseph, J. Rakshavi, J.A.K. Florence, P.N. Sudha, G. Rajakumar, M. Thiruvengadam, Biological activities of chitosan-salicylaldehyde schiff base assisted silver nanoparticles, J. King Saud Univ. – Sci. 34 (2022) 102177.
[56] P. Kesharwani, K.K. Singh, Preface, Nanoparticle Ther. Prod. Technol. Types Nanoparticles, Regul. Asp. (2022) xvii–xix.
[57] Y.M. Cho, Y. Mizuta, J.I. Akagi, T. Toyoda, M. Sone, K. Ogawa, Size-dependent acute toxicity of silver nanoparticles in mice, J. Toxicol. Pathol. 31 (2018) 73–80.
[58] N. Saifuddin, C.W. Wong, A.A.N. Yasumira, Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation, E-Journal Chem. 6 (2009) 61–70.
[59] J.P. Kratohvil, Light Scattering, Anal. Chem. 36 (1964) 458–472.
[60] Y. Dong, L. Wang, D.P. Burgner, J.E. Miller, Y. Song, X. Ren, Z. Li, Y. Xing, J. Ma, S.M. Sawyer, G.C. Patton, Infectious diseases in children and adolescents in China: Analysis of national surveillance data from 2008 to 2017, BMJ. 369 (2020) m1043–m1043.
[61] R.P. Allaker, Critical review in oral biology & medicine: The use of nanoparticles to control oral biofilm formation, J. Dent. Res. 89 (2010) 1175–1186.
[62] M. Garland, S. Loscher, M. Bogyo, Chemical Strategies To Target Bacterial Virulence, Chem. Rev. 117 (2017) 4422–4461.
[63] J. Rello, L. Campogiani, V.K. Eshwara, Understanding resistance in enterococcal infections, Intensive Care Med. 46 (2020) 353–356.
[64] D.K. Carpenter, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Berne, Bruce J.; Pecora, Robert), J. Chem. Educ. 54 (1977) A430.
[65] R. Das, S.S. Nath, D. Chakdar, G. Gope, R. Bhattacharjee, Synthesis of silver nanoparticles and their optical properties, J. Exp. Nanosci. 5 (2010) 357–362.
[66] A. Karatutlu, A. Barhoum, A. Sapelkin, Liquid-phase synthesis of nanoparticles and nanostructured materials, Emerg. Appl. Nanoparticles Archit. Nanostructures Curr. Prospect. Futur. Trends. (2018) 1–28.
[67] S. Saint, J.G. Elmore, S.D. Sullivan, S.S. Emerson, T.D. Koepsell, The Efficacy of Silver Alloy-Coated Urinary Catheters in Preventing Urinary Tract Infection: A Meta-Analysis, J. Urol. 161 (1999) 1422–1422.
[68] U. Klueh, V. Wagner, S. Kelly, A. Johnson, J.D. Bryers, Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation, J. Biomed. Mater. Res. 53 (2000) 621–631.<621::AID-JBM2>3.0.CO;2-Q
[69] S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. Vitr. 19 (2005) 975–983.
[70] P.E. Champness, Diffraction and the electron microscope, Electron Diffr. Transm. Electron Microsc. (2020) 1–23.
[71] J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst. Eng. 32 (2009) 79–84.
[72] D.D. Evanoff, G. Chumanov, Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections, J. Phys. Chem. B. 108 (2004) 13957–13962.
[73] P.I. Haris, Andrew J. Macnab – An innovator and pioneer in the field of Biomedical Near Infrared Spectroscopy, Biomed. Spectrosc. Imaging. 3 (2014) 307–309.
[74] M. Vallet-Regí, B. González, I. Izquierdo-Barba, Nanomaterials as promising alternative in the infection treatment, Int. J. Mol. Sci. 20 (2019) 3806.
[75] Noble Metal Nanoparticles: Preparation, Composite Nanostructures, Biodecoration and Collective Properties, Focus Catal. 2018 (2018) 7.
[76] M.R. Almofti, T. Ichikawa, K. Yamashita, H. Terada, Y. Shinohara, Silver ion induces a cyclosporine A-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome c, J. Biochem. 134 (2003) 43–49.
[77] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science, Biomater. Sci. (1996) 1–9.
[78] Publishers note, Vib. Spectrosc. 43 (2007) 1.
[79] A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study, J. Nanomater. 2015 (2015) 1–8.
[80] G. Merga, R. Wilson, G. Lynn, B.H. Milosavljevic, D. Meisel, Redox catalysis on “naked” silver nanoparticles, J. Phys. Chem. C. 111 (2007) 12220–12226.
[81] X. Yan, B. He, L. Liu, G. Qu, J. Shi, L. Hu, G. Jiang, Antibacterial mechanism of silver nanoparticles in: Pseudomonas aeruginosa: Proteomics approach, Metallomics. 10 (2018) 557–564.
[82] M. Zubair, M. Azeem, R. Mumtaz, M. Younas, M. Adrees, E. Zubair, A. Khalid, F. Hafeez, M. Rizwan, S. Ali, Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy, Environ. Pollut. 304 (2022) 119249.
[83] A.C. Burdușel, O. Gherasim, A.M. Grumezescu, L. Mogoantă, A. Ficai, E. Andronescu, Biomedical applications of silver nanoparticles: An up-to-date overview, Nanomaterials. 8 (2018) 681.
[84] K.P. Rumbaugh, K. Sauer, Biofilm dispersion, Nat. Rev. Microbiol. 18 (2020) 571–586.
[85] R.S. Patil, M.R. Kokate, C.L. Jambhale, S.M. Pawar, S.H. Han, S.S. Kolekar, One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application, Adv. Nat. Sci. Nanosci. Nanotechnol. 3 (2012) 15013.
[86] M. Torras, A. Roig, From Silver Plates to Spherical Nanoparticles: Snapshots of Microwave-Assisted Polyol Synthesis, ACS Omega. 5 (2020) 5731–5738.
[87] K.C. Bhainsa, S.F. D’Souza, Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus, Colloids Surfaces B Biointerfaces. 47 (2006) 160–164.
[88] K. Tiede, A.B.A. Boxall, S.P. Tear, J. Lewis, H. David, M. Hassellöv, Detection and characterization of engineered nanoparticles in food and the environment, Food Addit. Contam. – Part A Chem. Anal. Control. Expo. Risk Assess. 25 (2008) 795–821.
[89] A.C. Burdușel, O. Gherasim, A.M. Grumezescu, L. Mogoantă, A. Ficai, E. Andronescu, Biomedical applications of silver nanoparticles: An up-to-date overview, Nanomaterials. 8 (2018) 681.
[90] Woodhead Publishing Series in Biomaterials, Bioresorbable Polym. Biomed. Appl. (2017) xix–xxiv.
[91] R.I. Barbhuiya, P. Singha, N. Asaithambi, S.K. Singh, Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste, Food Chem. 385 (2022) 132602.
[92] T. Sannomiya, C. Hafner, J. Voros, In situ sensing of single binding events by localized surface plasmon resonance, Nano Lett. 8 (2008) 3450–3455.
[93] S.K. Sharma, D.S. Verma, L.U. Khan, S. Kumar, S.B. Khan, Handbook of Materials Characterization, Handb. Mater. Charact. (2018) 1–613.
[94] B. Galeano, E. Korff, W.L. Nicholson, Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on Stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation, Appl. Environ. Microbiol. 69 (2003) 4329–4331.
[95] Ö. Kaplan, N. Gökşen Tosun, R. İmamoğlu, İ. Türkekul, İ. Gökçe, A. Özgür, Biosynthesis and characterization of silver nanoparticles from Tricholoma ustale and Agaricus arvensis extracts and investigation of their antimicrobial, cytotoxic, and apoptotic potentials, J. Drug Deliv. Sci. Technol. 69 (2022) 103178.
[96] K. Deplanche, I. Caldelari, I.P. Mikheenko, F. Sargent, L.E. Macaskie, Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains, Microbiology. 156 (2010) 2630–2640.
[97] C. Shanmugam, G. Sivasubramanian, B. Parthasarathi, K. Baskaran, R. Balachander, V.R. Parameswaran, Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability, Appl. Nanosci. 6 (2016) 711–723.
[98] T. Karan, R. Erenler, B. Moran Bozer, Synthesis and characterization of silver nanoparticles using curcumin: Cytotoxic, apoptotic, and necrotic effects on various cell lines, Zeitschrift Fur Naturforsch. – Sect. C J. Biosci. 77 (2022) 343–350.
[99] S. Mukherjee, B.L. Bassler, Bacterial quorum sensing in complex and dynamically changing environments, Nat. Rev. Microbiol. 17 (2019) 371–382.
[100] V.R. Netala, V.S. Kotakadi, V. Nagam, P. Bobbu, S.B. Ghosh, V. Tartte, First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity, Appl. Nanosci. 5 (2015) 801–807.
[101] M.H. Xiong, Y.J. Li, Y. Bao, X.Z. Yang, B. Hu, J. Wang, Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery, Adv. Mater. 24 (2012) 6175–6180.
[102] K.A. Linder, P.N. Malani, Meningococcal Meningitis, JAMA – J. Am. Med. Assoc. 321 (2019) 1014.
[103] X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches, Int. J. Mol. Sci. 17 (2016) 1534.
[104] A. Ingle, M. Rai, A. Gade, M. Bawaskar, Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles, J. Nanoparticle Res. 11 (2009) 2079–2085.
[105] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 73 (2007) 1712–1720.
[106] J. Kesharwani, K.Y. Yoon, J. Hwang, M. Rai, Phytofabrication of silver nanoparticles by leaf extract of Datura metel: Hypothetical mechanism involved in synthesis, J. Bionanoscience. 3 (2009) 39–44.
[107] E. Ogunsona, E. Ojogbo, T. Mekonnen, Advanced material applications of starch and its derivatives, Eur. Polym. J. 108 (2018) 570–581.
[108] M. Ovais, A.T. Khalil, A. Raza, M.A. Khan, I. Ahmad, N.U. Islam, M. Saravanan, M.F. Ubaid, M. Ali, Z.K. Shinwari, Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics, Nanomedicine. 12 (2016) 3157–3177.
[109] M.N. Owaid, J. Raman, H. Lakshmanan, S.S.S. Al-Saeedi, V. Sabaratnam, I. Ali Abed, Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp., Mater. Lett. 153 (2015) 186–190.
[110] V.U.M. Nallal, K.N. Devi, M. Razia, Biogenic fabrication and characterization of Silver nanoparticles using high altitude lichen Heteroderimia leucomela extract and its potential applications, Mater. Today Proc. 50 (2021) 365–370.
[111] H. Korbekandi, S. Iravani, S. Abbasi, Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei, J. Chem. Technol. Biotechnol. 87 (2012) 932–937.
[112] A.E.F. Oliveira, A.C. Pereira, M.A.C. de Resende, L.F. Ferreira, Synthesis of a silver nanoparticle ink for fabrication of reference electrodes, Talanta Open. 5 (2022) 100085.
[113] R.G. Wunderink, G. Waterer, Advances in the causes and management of community acquired pneumonia in adults, BMJ. 358 (2017) j2471.
[114] M. Guilger-Casagrande, R. de Lima, Synthesis of Silver Nanoparticles Mediated by Fungi: A Review, Front. Bioeng. Biotechnol. 7 (2019) 287.
[115] J.M. V. Makabenta, A. Nabawy, C.H. Li, S. Schmidt-Malan, R. Patel, V.M. Rotello, Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections, Nat. Rev. Microbiol. 19 (2021) 23–36.
[116] A.R. Shahverdi, S. Minaeian, H.R. Shahverdi, H. Jamalifar, A.A. Nohi, Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach, Process Biochem. 42 (2007) 919–923.
[117] E. Roeven, L. Scheres, M.M.J. Smulders, H. Zuilhof, Design, Synthesis, and Characterization of Fully Zwitterionic, Functionalized Dendrimers, ACS Omega. 4 (2019) 3000–3011.
[118] T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang, Influence of surfactant on the preparation of silver nanoparticles by polyol method, Adv. Nat. Sci. Nanosci. Nanotechnol. 3 (2012) 35004.
[119] N. Nasri, A. Rusli, N. Teramoto, M. Jaafar, K.M. Ku Ishak, M.D. Shafiq, Z.A. Abdul Hamid, Green synthesis and characterization of silver nanoparticles by using turmeric extract and chitosan mixture, Mater. Today Proc. 66 (2022) 3044–3048.
[120] K.B. Holt, A.J. Bard, Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag, Biochemistry. 44 (2005) 13214–13223.