Top-down and Bottom-up Approaches for Synthesis of Nanoparticles


Top-down and Bottom-up Approaches for Synthesis of Nanoparticles

Supriya Tripathy, Jolina Rodrigues, Navinchandra Gopal Shimpi

There are numerous potential uses as nanoparticles produced from green methods in the medicinal and environmental sciences with a reduction of harmful chemicals and solvents. To synthesize nanoparticles use of safe organic resources like plants, and microorganisms producing nanoparticles for numerous applications such as catalysis, sensing, electronics, photonics and medicine. Aiming to minimize or prevent waste generated from reactions while maintaining efficacy. In this chapter, as well as the production of plant-mediated nanoparticles and some current uses of these materials, such as gold, silver, copper, palladium, platinum, zinc oxide, and titanium dioxide, the fundamentals of green chemistry have been discussed.

Nanoparticles, Green Synthesis, Carbon-Based Nanomaterials, Metal-Based Nanomaterials

Published online , 39 pages

Citation: Supriya Tripathy, Jolina Rodrigues, Navinchandra Gopal Shimpi, Top-down and Bottom-up Approaches for Synthesis of Nanoparticles, Materials Research Proceedings, Vol. 145, pp 92-130, 2023


Part of the book on Nanobiomaterials

[1] J.A. Linthorst, An overview: origins and development of green chemistry, Found Chem. 12 (2010) 55–68.
[2] cathcart, green chemistry in the emerald, Isle.Chem.Ind. 5 (1990) 684–687
[3] W. Leitner, Toward Benign Ends, Science (1979). 284 (1999) 1780–1781.
[4] István T. Horváth6, P.T. Anastas, Introduction: Green Chemistry, Chem Rev. 107 (2007) 2167–2168.
[5] R.E. Benedick, Human Population and Environmental Stresses in the Twenty-first Century INTRODUCTION: PEOPLE AND THEIR ENVIRONMENT, n.d
[6] M.-C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, (2004).
[7] K. Bogunia-Kubik, M. Sugisaka, From molecular biology to nanotechnology and nanomedicine, Biosystems. 65 (2002) 123–138.
[8] V.P. Zharov, J.-W. Kim, D.T. Curiel, M. Everts, Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy, Nanomedicine. 1 (2005) 326–345.
[9] M. Tan, G. Wang, Z. Ye, J. Yuan, Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling, J Lumin. 117 (2006) 20–28.
[10] H.-Y. Lee, Z. Li, K. Chen, A.R. Hsu, C. Xu, J. Xie, S. Sun, X. Chen, PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles, Journal of Nuclear Medicine. 49 (2008) 1371–1379.
[11] D. Pissuwan, S.M. Valenzuela, M.B. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles, Trends Biotechnol. 24 (2006) 62–67.
[12] S. Panigrahi, S. Kundu, S. Ghosh, S. Nath, T. Pal, General method of synthesis for metal nanoparticles, Journal of Nanoparticle Research. 6 (2004) 411–414.
[13] W.M. Liao, W.T. Lai, P.W. Li, M.T. Kuo, P.S. Chen, M.J. Tsai, 5th IEEE Conference on nanotechnology, in: 2005: pp. 549–552
[14] S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chemistry. 13 (2011) 2638.
[15] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf B Biointerfaces. 28 (2003) 313–318.
[16] S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms, Nat Mater. 3 (2004) 482–488.
[17] U. Kumar Sur, B. Ankamwar, S. Karmakar, A. Halder, P. Das, Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha, Mater Today Proc. 5 (2018) 2321–2329.
[18] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology. 18 (2007) 105104.
[19] H. Korbekandi, R.M. Jouneghani, S. Mohseni, M. Pourhossein, S. Iravani, Synthesis of silver nanoparticles using biotransformations by Saccharomyces boulardii, Green Processing and Synthesis. 3 (2014) 271–277.
[20] A. Ivanković, Review of 12 Principles of Green Chemistry in Practice, International Journal of Sustainable and Green Energy. 6 (2017) 39.
[21] Mohd Wahid, Faizan Ahmad, Nafees Ahmad, Green Chemistry: Principle and its Application, in: 2017: pp. 395–399
[22] M. Jukic, S. Djakovic, Z. Filipovic-Kovacevic, v. Kovac, J. Vorkapic-Furac, Dominant trends of green chemistry, . . Kem Ind. 54 (2005) 255–272
[23] D. Margetic, Mechanic-chemical organic reactions without the use of solvents, Kem Ind. 54 (2005) 351–358
[24] G. S. Sodhi, Fundamental Concepts of Environmental Chemistry, Alpha Science International, 2005
[25] D. Mijin, M. Stankovic, S. Petrovic, Ibuprofen: Synthesis, production and properties, Hem Ind. 57 (2003) 199–214.
[26] T. Welton, Solvents and sustainable chemistry, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 471 (2015) 20150502.
[27] H.W. Hill, D.G. Brady, Properties, environmental stability, and molding characteristics of polyphenylene sulfide, Polym Eng Sci. 16 (1976) 831–835.
[28] J. Kärkkäinen, M. Siponen, H. Mantila, J. Kostamovaara, V. Senior, A. Timo, L. Communications Officer, E. Stjerna, S. Eriksson, O. Vuolteenaho, K. Nurkkala, A scientiae rerum naturalium a 480 preparation and characterization of some ionic liquids and their use in the dimerization reaction of 2-methylpropene scientiae rerum naturalium humaniora technica medica scientiae rerum socialium scripta academica oeconomica editor in chief editorial secretary, in: 2007
[29] M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S. Lackner, J.S. Lewis, H.D. Lightfoot, W. Manheimer, J.C. Mankins, M.E. Mauel, L.J. Perkins, M.E. Schlesinger, T. Volk, T.M.L. Wigley, Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet, Science (1979). 298 (2002) 981–987.
[30] Z. Findrik Blazevic, Bioreactivity Technique I, 2013
[31] Paul T. Anastas, Handbook of green chemistry , Green Catalysis. 1 (2013)
[32] Roger Arthur Sheldon, Isabel Arends, Ulf Hanefeld, Introduction: Green Chemistry and catalysis, 2007
[33] R. T. Williams, Human health pharmaceuticals in the environment: an introduction, Allen Press/ACG Publishing, 2005
[34] K. Wegner, B. Schimmöller, B. Thiebaut, C. Fernandez, T.N. Rao, Pilot Plants for Industrial Nanoparticle Production by Flame Spray Pyrolysis, KONA Powder and Particle Journal. 29 (2011) 251–265.
[35] J.C. Ion, Laser Processing of Engineering Materials: Principal Procedure and Industrial Application, Elsevier: Oxford, 2006
[36] H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review, Adv Funct Mater. 22 (2012) 1333–1353.
[37] V. Amendola, M. Meneghetti, What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?, Phys. Chem. Chem. Phys. 15 (2013) 3027–3046.
[38] J. Leng, Z. Wang, J. Wang, H.-H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, Z. Guo, Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion, Chem Soc Rev. 48 (2019) 3015–3072.
[39] A. Aboulouard, B. Gultekin, M. Can, M. Erol, A. Jouaiti, B. Elhadadi, C. Zafer, S. Demic, Dye sensitized solar cells based on titanium dioxide nanoparticles synthesized by flame spray pyrolysis and hydrothermal sol-gel methods: a comparative study on photovoltaic performances, Journal of Materials Research and Technology. 9 (2020) 1569–1577.
[40] P. Pawinrat, O. Mekasuwandumrong, J. Panpranot, Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes, Catal Commun. 10 (2009) 1380–1385.
[41] J.G. Walter, S. Petersen, F. Stahl, T. Scheper, S. Barcikowski, Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers, J Nanobiotechnology. 8 (2010) 21.
[42] S. Salmaso, P. Caliceti, V. Amendola, M. Meneghetti, J.P. Magnusson, G. Pasparakis, C. Alexander, Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer, J Mater Chem. 19 (2009) 1608.
[43] D.R. Joshi, N. Adhikari, An Overview on Common Organic Solvents and Their Toxicity, J Pharm Res Int. (2019) 1–18.
[44] M. Tobiszewski, J. Namieśnik, F. Pena-Pereira, Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis, Green Chemistry. 19 (2017) 1034–1042.
[45] P.A. Akinyemi, C.A. Adegbenro, T.O. Ojo, O. Elugbaju, Neurobehavioral Effects of Organic Solvents Exposure Among Wood Furniture Makers in Ile-Ife, Osun State, Southwestern Nigeria, J Health Pollut. 9 (2019).
[46] R. Mueller, R. Jossen, S.E. Pratsinis, M. Watson, M.K. Akhtar, Zirconia Nanoparticles Made in Spray Flames at High Production Rates, Journal of the American Ceramic Society. 87 (2004) 197–202.
[47] R. Strobel, A. Baiker, S.E. Pratsinis, Aerosol flame synthesis of catalysts, Advanced Powder Technology. 17 (2006) 457–480.
[48] W.Y. Teoh, R. Amal, L. Mädler, Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication, Nanoscale. 2 (2010) 1324.
[49] K.-M. Choi, T.-H. Kim, K.-S. Kim, S.-G. Kim, Case Study, J Occup Environ Hyg. 10 (2013) D1–D5.
[50] P. Caramazana, P. Dunne, M. Gimeno-Fabra, J. McKechnie, E. Lester, A review of the environmental impact of nanomaterial synthesis using continuous flow hydrothermal synthesis, Curr Opin Green Sustain Chem. 12 (2018) 57–62.
[51] L. Pourzahedi, M.J. Eckelman, Comparative life cycle assessment of silver nanoparticle synthesis routes, Environ Sci Nano. 2 (2015) 361–369.
[52] P. Aarthye, M. Sureshkumar, Green synthesis of nanomaterials: An overview, Mater Today Proc. 47 (2021) 907–913.
[53] M. Huston, M. DeBella, M. DiBella, A. Gupta, Green Synthesis of Nanomaterials, Nanomaterials. 11 (2021) 2130.
[54] A. Sivaraj, V. Kumar, R. Sunder, K. Parthasarathy, G. Kasivelu, Commercial Yeast Extracts Mediated Green Synthesis of Silver Chloride Nanoparticles and their Anti-mycobacterial Activity, J Clust Sci. 31 (2020) 287–291.
[55] M. Tulinski, M. Jurczyk, Nanomaterials Synthesis Methods, in: Metrology and Standardization of Nanotechnology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2017: pp. 75–98.
[56] N. Shamim, K. Virender, Sustainable Nanotechnology and the Environment: Advances and Achievements, Green Synthesis of Nanomaterials: Environmental Aspects, 2013
[57] N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan, M. Maqbool, Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review, Adv Colloid Interface Sci. 300 (2022) 102597.
[58] D.B. Ravnsbaek, L.H. Sørensen, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Screening of Metal Borohydrides by Mechanochemistry and Diffraction, Angewandte Chemie. 124 (2012) 3642–3646.
[59] R. Černý, P. Schouwink, Y. Sadikin, K. Stare, L. Smrčok, B. Richter, T.R. Jensen, Trimetallic Borohydride Li 3 MZn 5 (BH 4 ) 15 (M = Mg, Mn) Containing Two Weakly Interconnected Frameworks, Inorg Chem. 52 (2013) 9941–9947.
[60] D.B. Ravnsbæk, E.A. Nickels, R. Černý, C.H. Olesen, W.I.F. David, P.P. Edwards, Y. Filinchuk, T.R. Jensen, Novel Alkali Earth Borohydride Sr(BH 4 ) 2 and Borohydride-Chloride Sr(BH 4 )Cl, Inorg Chem. 52 (2013) 10877–10885.
[61] M.B. Ley, D.B. Ravnsbæk, Y. Filinchuk, Y.-S. Lee, R. Janot, Y.W. Cho, J. Skibsted, T.R. Jensen, LiCe(BH 4 ) 3 Cl, a New Lithium-Ion Conductor and Hydrogen Storage Material with Isolated Tetranuclear Anionic Clusters, Chemistry of Materials. 24 (2012) 1654–1663.
[62] J. Huot, D.B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, T.R. Jensen, Mechanochemical synthesis of hydrogen storage materials, Prog Mater Sci. 58 (2013) 30–75.
[63] M.M. Verdian, K. Raeissi, M. Salehi, Electrochemical impedance spectroscopy of HVOF-sprayed NiTi intermetallic coatings deposited on AISI 1045 steel, J Alloys Compd. 507 (2010) 42–46.
[64] O.D. Neikov, Mechanical Crushing and Grinding, in: Handbook of Non-Ferrous Metal Powders, Elsevier, 2009: pp. 47–62.
[65] L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A.M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, J Mater Chem. 21 (2011) 11862.
[66] D.G. R. Janot, Ball-milling: the behavior of graphite as a function of the dispersal media, Carbon N Y, 40 (2002) 2887–2896
[67] I. Ijaz, E. Gilani, A. Nazir, A. Bukhari, Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles, Green Chem Lett Rev. 13 (2020) 223–245.
[68] M. Salavati-Niasari, F. Davar, N. Mir, Synthesis and characterization of metallic copper nanoparticles via thermal decomposition, Polyhedron. 27 (2008) 3514–3518.
[69] Y. Guo, X. Fu, Z. Peng, Controllable synthesis of MoS2 nanostructures from monolayer flakes, few-layer pyramids to multilayer blocks by catalyst-assisted thermal evaporation, J Mater Sci. 53 (2018) 8098–8107.
[70] A. Basak, A. Hati, A. Mondal, U.P. Singh, S.K. Taheruddin, Effect of substrate on the structural, optical and electrical properties of SnS thin films grown by thermal evaporation method, Thin Solid Films. 645 (2018) 97–101.
[71] Q. Shi, Q. Wang, D. Zhang, Q. Wang, S. Li, W. Wang, Q. Fan, J. Zhang, Structural, optical and photoluminescence properties of Ga2O3 thin films deposited by vacuum thermal evaporation, J Lumin. 206 (2019) 53–58.
[72] R. Keshav, M.G. Mahesha, Investigation on performance of CdTe solar cells with CdS and bilayer ZnS/CdS windows grown by thermal evaporation technique, Int J Energy Res. 45 (2021) 7421–7435.
[73] D.M. Mattox, Physical vapor deposition (PVD) processes, Metal Finishing. 100 (2002) 394–408.
[74] A. Bashir, T.I. Awan, A. Tehseen, M.B. Tahir, M. Ijaz, Interfaces and surfaces, in: Chemistry of Nanomaterials, Elsevier, 2020: pp. 51–87.
[75] S. Wang, X. Li, J. Wu, W. Wen, Y. Qi, Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: A progress review, Curr Opin Electrochem. 11 (2018) 130–140.
[76] S. Ravi‐Kumar, B. Lies, X. Zhang, H. Lyu, H. Qin, Laser ablation of polymers: a review, Polym Int. 68 (2019) 1391–1401.
[77] H. Huang, J. Lai, J. Lu, Z. Li, Pulsed laser ablation of bulk target and particle products in liquid for nanomaterial fabrication, AIP Adv. 9 (2019) 015307.
[78] R. Zhou, S. Lin, Y. Ding, H. Yang, K. Ong Yong Keng, M. Hong, Enhancement of laser ablation via interacting spatial double-pulse effect, Opto-Electronic Advances. 1 (2018) 18001401–18001406.
[79] N. Mintcheva, S. Yamaguchi, S.A. Kulinich, Hybrid TiO2-ZnO Nanomaterials Prepared Using Laser Ablation in Liquid, Materials. 13 (2020) 719.
[80] N. Mintcheva, A.A. Aljulaih, S. Bito, M. Honda, T. Kondo, S. Iwamori, S.A. Kulinich, Nanomaterials produced by laser beam ablating Sn-Zn alloy in water, J Alloys Compd. 747 (2018) 166–175.
[81] M. Sportelli, M. Izzi, A. Volpe, M. Clemente, R. Picca, A. Ancona, P. Lugarà, G. Palazzo, N. Cioffi, The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials, Antibiotics. 7 (2018) 67.
[82] I. Ijaz, E. Gilani, A. Nazir, A. Bukhari, Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles, Green Chem Lett Rev. 13 (2020) 223–245.
[83] I. Sayago, E. Hontañón, M. Aleixandre, Preparation of tin oxide nanostructures by chemical vapor deposition, in: Tin Oxide Materials, Elsevier, 2020: pp. 247–280.
[84] S. Bhaviripudi, E. Mile, S.A. Steiner, A.T. Zare, M.S. Dresselhaus, A.M. Belcher, J. Kong, CVD Synthesis of Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts, J Am Chem Soc. 129 (2007) 1516–1517.
[85] L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M.H. Gharahcheshmeh, K.K. Gleason, Y.S. Choi, B.H. Hong, Z. Liu, Chemical vapour deposition, Nature Reviews Methods Primers. 1 (2021) 5.
[86] M. Adachi, S. Tsukui, K. Okuyama, Nanoparticle Synthesis by Ionizing Source Gas in Chemical Vapor Deposition, Jpn J Appl Phys. 42 (2003) L77–L79.
[87] Y.B. Pottathara, Y. Grohens, V. Kokol, N. Kalarikkal, S. Thomas, Synthesis and Processing of Emerging Two-Dimensional Nanomaterials, in: Nanomaterials Synthesis, Elsevier, 2019: pp. 1–25.
[88] P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J Drug Deliv Sci Technol. 53 (2019) 101174.
[89] A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, in: Synthesis of Inorganic Nanomaterials, Elsevier, 2018: pp. 121–139.
[90] S. Ghasaban, M. Atai, M. Imani, Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis, Mater Res Express. 4 (2017) 035010.
[91] G. Yang, S.-J. Park, Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review, Materials. 12 (2019) 1177.
[92] B.P. Kafle, Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization, in: Chemical Analysis and Material Characterization by Spectrophotometry, Elsevier, 2020: pp. 147–198.
[93] R. Dorey, Routes to thick films, in: Ceramic Thick Films for MEMS and Microdevices, Elsevier, 2012: pp. 35–61.
[94] Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal Synthesis of Nanomaterials, J Nanomater. 2020 (2020) 1–3.
[95] E.B. Denkbaş, E. Çelik, E. Erdal, D. Kavaz, Ö. Akbal, G. Kara, C. Bayram, Magnetically based nanocarriers in drug delivery, in: Nanobiomaterials in Drug Delivery, Elsevier, 2016: pp. 285–331.
[96] N. Asim, S. Ahmadi, M.A. Alghoul, F.Y. Hammadi, K. Saeedfar, K. Sopian, Research and Development Aspects on Chemical Preparation Techniques of Photoanodes for Dye Sensitized Solar Cells, International Journal of Photoenergy. 2014 (2014) 1–21.
[97] Z. Vaseghi, A. Nematollahzadeh, Nanomaterials, in: Green Synthesis of Nanomaterials for Bioenergy Applications, Wiley, 2020: pp. 23–82.
[98] L.A. Kolahalam, I.V. Kasi Viswanath, B.S. Diwakar, B. Govindh, V. Reddy, Y.L.N. Murthy, Review on nanomaterials: Synthesis and applications, Mater Today Proc. 18 (2019) 2182–2190.
[99] N. Wang, J.Y.H. Fuh, S.T. Dheen, A. Senthil Kumar, Synthesis methods of functionalized nanoparticles: a review, Biodes Manuf. 4 (2021) 379–404.
[100] U.P.M. Ashik, S. Kudo, J. Hayashi, An Overview of Metal Oxide Nanostructures, in: Synthesis of Inorganic Nanomaterials, Elsevier, 2018: pp. 19–57.
[101] K. Ravichandran, P.K. Praseetha, T. Arun, S. Gobalakrishnan, Synthesis of Nanocomposites, in: Synthesis of Inorganic Nanomaterials, Elsevier, 2018: pp. 141–168.
[102] H. Li, B.-S. Yang, Model evaluation of particle breakage facilitated process intensification for Mixed-Suspension-Mixed-Product-Removal (MSMPR) crystallization, Chem Eng Sci. 207 (2019) 1175–1186.
[103] M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications, Journal of Materials Science: Materials in Electronics. 31 (2020) 3729–3749.
[104] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater Adv. 2 (2021) 1821–1871.
[105] R. D’Amato, M. Falconieri, S. Gagliardi, E. Popovici, E. Serra, G. Terranova, E. Borsella, Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications, J Anal Appl Pyrolysis. 104 (2013) 461–469.
[106] S. Anu Mary Ealia, M.P. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application, IOP Conf Ser Mater Sci Eng. 263 (2017) 032019.
[107] O. Oluwatosin Abegunde, E. Titilayo Akinlabi, O. Philip Oladijo, S. Akinlabi, A. Uchenna Ude, Overview of thin film deposition techniques, AIMS Mater Sci. 6 (2019) 174–199.
[108] M. Maqbool, I. Ahmad, H.H. Richardson, M.E. Kordesch, Direct ultraviolet excitation of an amorphous AlN:praseodymium phosphor by codoped Gd3+ cathodoluminescence, Appl Phys Lett. 91 (2007) 193511.
[109] M.T. Nguyen, T. Yonezawa, Sputtering onto a liquid: interesting physical preparation method for multi-metallic nanoparticles, Sci Technol Adv Mater. 19 (2018) 883–898.
[110] A. Bengtson, V. Hoffmann, M. Kasik, K. Marshall, Analytical Glow Discharges: Fundamentals, Applications, and New Developments, in: Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd, Chichester, UK, 2017: pp. 1–40.
[111] P. Savale, Comparative study of various chemical deposition methods for synthesis of thin films: a review, Asian J. Res. Chem. 11 (2018) 195
[112] S. Shahidi, B. Moazzenchi, M. Ghoranneviss, A review-application of physical vapor deposition (PVD) and related methods in the textile industry, The European Physical Journal Applied Physics. 71 (2015) 31302.
[113] W. Zeng, N. Chen, W. Xie, Research progress on the preparation methods for VO 2 nanoparticles and their application in smart windows, CrystEngComm. 22 (2020) 851–869.
[114] G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda, R.S. Varma, Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols, J Mater Chem. 19 (2009) 8671.
[115] T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T.B. Scott, K.R. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes, Chemical Engineering Journal. 172 (2011) 258–266.
[116] N.C. da R. Galucio, D. de A. Moysés, J.R.S. Pina, P.S.B. Marinho, P.C. Gomes Júnior, J.N. Cruz, V.V. Vale, A.S. Khayat, A.M. do R. Marinho, Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn, Arabian Journal of Chemistry. 15 (2022) 103589.
[117] K. Mohan Kumar, B.K. Mandal, K. Siva Kumar, P. Sreedhara Reddy, B. Sreedhar, Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract, Spectrochim Acta A Mol Biomol Spectrosc. 102 (2013) 128–133.
[118] L. Huang, X. Weng, Z. Chen, M. Megharaj, R. Naidu, Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity, Spectrochim Acta A Mol Biomol Spectrosc. 130 (2014) 295–301.
[119] Y. Kuang, Q. Wang, Z. Chen, M. Megharaj, R. Naidu, Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles, J Colloid Interface Sci. 410 (2013) 67–73.
[120] S. Thakur, N. Karak, One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal, Mater Chem Phys. 144 (2014) 425–432.
[121] E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Biosynthesis of Iron and Silver Nanoparticles at Room Temperature Using Aqueous Sorghum Bran Extracts, Langmuir. 27 (2011) 264–271.
[122] T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution, J Clean Prod. 83 (2014) 413–419.
[123] B. Ajitha, Y. Ashok Kumar Reddy, P. Sreedhara Reddy, Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract, Materials Science and Engineering: C. 49 (2015) 373–381.
[124] A.R.J.A. de M. Lima, A.S. Siqueira, M.L.S. Möller, R.C. de Souza, J.N. Cruz, A.R.J.A. de M. Lima, R.C. da Silva, D.C.F. Aguiar, J.L. da S.G.V. Junior, E.C. Gonçalves, In silico improvement of the cyanobacterial lectin microvirin and mannose interaction, J Biomol Struct Dyn. (2020).
[125] G. Singaravelu, J.S. Arockiamary, V.G. Kumar, K. Govindaraju, A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville, Colloids Surf B Biointerfaces. 57 (2007) 97–101.
[126] K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine. 6 (2010) 257–262.
[127] M.S. Mauter, M. Elimelech, Environmental Applications of Carbon-Based Nanomaterials, Environ Sci Technol. 42 (2008) 5843–5859.
[128] F.S. Alves, J. de A. Rodrigues Do Rego, M.L. da Costa, L.F. Lobato Da Silva, R.A. da Costa, J.N. Cruz, D.D.S.B. Brasil, Spectroscopic methods and in silico analyses using density functional theory to characterize and identify piperine alkaloid crystals isolated from pepper (Piper Nigrum L.), J Biomol Struct Dyn. 38 (2020) 2792–2799.
[129] E. Asadian, M. Ghalkhani, S. Shahrokhian, Electrochemical sensing based on carbon nanoparticles: A review, Sens Actuators B Chem. 293 (2019) 183–209.
[130] Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications, J Mater Chem C Mater. 2 (2014) 6921.
[131] J. Deng, M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion, Green Chemistry. 18 (2016) 4824–4854.
[132] O. Zaytseva, G. Neumann, Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications, Chemical and Biological Technologies in Agriculture. 3 (2016) 17.
[133] A. Saha, C. Jiang, A.A. Martí, Carbon nanotube networks on different platforms, Carbon N Y. 79 (2014) 1–18.
[134] A. Moisala, A.G. Nasibulin, E.I. Kauppinen, The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review, Journal of Physics: Condensed Matter. 15 (2003) S3011–S3035.
[135] V.I. Sokolov, I. v Stankevich, The fullerenes — new allotropic forms of carbon: molecular and electronic structure, and chemical properties, Russian Chemical Reviews. 62 (1993) 419–435.
[136] N.B. Singh, P. Jain, A. De, R. Tomar, Green Synthesis and Applications of Nanomaterials, Curr Pharm Biotechnol. 22 (2021) 1705–1747.
[137] A. Rana, K. Yadav, S. Jagadevan, A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity, J Clean Prod. 272 (2020) 122880.
[138] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl Environ Microbiol. 73 (2007) 1712–1720.
[139] C.M.A. Rego, A.F. Francisco, C.N. Boeno, M. v Paloschi, J.A. Lopes, M.D.S. Silva, H.M. Santana, S.N. Serrath, J.E. Rodrigues, C.T.L. Lemos, R.S.S. Dutra, J.N. da Cruz, C.B.R. dos Santos, S. da S. Setúbal, M.R.M. Fontes, A.M. Soares, W.L. Pires, J.P. Zuliani, Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom, Sci Rep. 12 (2022) 1–17.
[140] M.N. Nadagouda, A.B. Castle, R.C. Murdock, S.M. Hussain, R.S. Varma, In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols, Green Chem. 12 (2010) 114–122.
[141] Q. Shou, C. Guo, L. Yang, L. Jia, C. Liu, H. Liu, Effect of pH on the single-step synthesis of gold nanoparticles using PEO–PPO–PEO triblock copolymers in aqueous media, J Colloid Interface Sci. 363 (2011) 481–489.