Green Chemistry Principles and Spectroscopic Methods Applied to Nanomaterials


Green Chemistry Principles and Spectroscopic Methods Applied to Nanomaterials

Anindita De, Roopa R.A., Manasa H.S., Mridula Guin

Nanomaterials have revolutionized the twenty-first century through many industrial breakthroughs. Hazardous chemical methods from non-renewable sources mostly perform the synthesis of these nanomaterials. Thus, synthesizing nanomaterials by twelve principles of green chemistry is the most demanding method that outperforms the chemical and physical synthesis methods in various aspects. The key features of the green approach are environmental friendliness, cost-effectiveness, and biocompatibility. The green principles use natural resources for nanomaterial synthesis and are currently on their way from the laboratory to commercial application. This chapter presents principles of green chemistry that are followed for nanomaterial synthesis. Recent advances in this field and overcoming the challenges to improve their commercialization have also been discussed.

Green Chemistry, Green Synthesis, Nanomaterials, Nanotechnology, Environment Friendly, Natural Source, Toxicity

Published online , 38 pages

Citation: Anindita De, Roopa R.A., Manasa H.S., Mridula Guin, Green Chemistry Principles and Spectroscopic Methods Applied to Nanomaterials, Materials Research Proceedings, Vol. 145, pp 54-91, 2023


Part of the book on Nanobiomaterials

[1] S. Horikoshi, N. Serpone, Introduction to Nanoparticles, Microwaves Nanoparticle Synth. Fundam. Appl. (2013) 1–24.
[2] E. Zekić, Ž. Vuković, I. Halkijević, Application of nanotechnology in wastewater treatment, Gradjevinar. 70 (2018) 315–323.
[3] J.S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, S. Duhan, Nanotechnology: The new perspective in precision agriculture, Biotechnol. Reports. 15 (2017) 11–23.
[4] Y. Huang, L. Mei, X. Chen, Q. Wang, Recent developments in food packaging based on nanomaterials, Nanomaterials. 8 (2018) 1–29.
[5] E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials, Science (80-. ). 366 (2019).
[6] R. Li, Z. Zha, Z. Miao, C.Y. Xu, Emerging 2D pnictogens for biomedical applications, Chinese Chem. Lett. 33 (2022) 2345–2353.
[7] S. Li, Z. Zhao, J. Zhao, Z. Zhang, X. Li, J. Zhang, Recent Advances of Ferro-, Piezo-, and Pyroelectric Nanomaterials for Catalytic Applications, ACS Appl. Nano Mater. 3 (2020) 1063–1079.
[8] Y.H. Wang, L.L. He, K.J. Huang, Y.X. Chen, S.Y. Wang, Z.H. Liu, D. Li, Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays, J. Comb. Math. Comb. Comput. 144 (2019) 2849–2866.
[9] Anindita De, N.B. Singh, M. Guin, S. Barthwal, Water Purification by Green Synthesized Nanomaterials, Curr. Pharm. Biotechnol. 24 (2022) 101–117.
[10] G.P. Halada, A. Orlov, Environmental degradation of engineered nanomaterials: Impact on materials design and use, Third Edit, Elsevier Inc., 2018.
[11] C.D. Jensen, N.A. Lewinski, Nanoparticle synthesis to green informatics frameworks, Curr. Opin. Green Sustain. Chem. 12 (2018) 117–126.
[12] L.M. Skjolding, S.N. Sørensen, N.B. Hartmann, R. Hjorth, S.F. Hansen, A. Baun, Aquatic Ecotoxicity Testing of Nanoparticles—The Quest To Disclose Nanoparticle Effects, Angew. Chemie – Int. Ed. 55 (2016) 15224–15239.
[13] M. Fojtů, W.Z. Teo, M. Pumera, Environmental impact and potential health risks of 2D nanomaterials, Environ. Sci. Nano. 4 (2017) 1617–1633.
[14] M.I. Sohail, A.A. Waris, M.A. Ayub, M. Usman, M. Zia ur Rehman, M. Sabir, T. Faiz, Environmental application of nanomaterials: A promise to sustainable future, 1st ed., Elsevier B.V., 2019.
[15] R. Sanghi, Sanghi-1662.pdf, (2000) 1662–1665
[16] N.B. Singh, M.A. B.H. Susan, M. Guin, Applications of Green Synthesized Nanomaterials in Water Remediation, Curr. Pharm. Biotechnol. 22 (2020) 733–761.
[17] D. Nath, P. Banerjee, Green nanotechnology – A new hope for medical biology, Environ. Toxicol. Pharmacol. 36 (2013) 997–1014.
[18] V.A. Basiuk, E. V. Basiuk, Green processes for nanotechnology: From inorganic to bioinspired nanomaterials, in: V.A. Basiuk, E. V. Basiuk (Eds.), Green Process. Nanotechnol. From Inorg. to Bioinspired Nanomater., 2015: pp. 1–446.
[19] K.B. Narayanan, N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents, Adv. Colloid Interface Sci. 169 (2011) 59–79.
[20] J.C.W. Paul T. Anastas, Green chemistry: theory and practice, Oxford University Press. New York, Naw York, 1998
[21] A.P. Dicks, A. Hent, Green Chemistry and Associated Metrics, (2015) 1–15.
[22] A. García-Quintero, M. Palencia, A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology, Sci. Total Environ. 793 (2021) 148524.
[23] P. Bardos, C. Merly, P. Kvapil, H.P. Koschitzky, Status of nanoremediation and its potential for future deployment: Risk-benefit and benchmarking appraisals, Remediation. 28 (2018) 43–56.
[24] B. Fabiano, A.P. Reverberi, P.S. Varbanov, Safety opportunities for the synthesis of metal nanoparticles and short-cut approach to workplace risk evaluation, J. Clean. Prod. 209 (2019) 297–308.
[25] J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Toward greener nanosynthesis, Chem. Rev. 107 (2007) 2228–2269.
[26] A.E.D. Mahmoud, M. Fawzy, Nanosensors and Nanobiosensors for Monitoring the Environmental Pollutants, in: Top. Mining, Metall. Mater. Eng., Springer International Publishing, Chambridge, 2021: pp. 229–246.
[27] H.S. Hassan, M.F. Elkady, N.M. Serour, Intelligent nanosensors (INS) for environmental applications, in: S.K. Chaudhery Hussain (Ed.), Handb. Nanomater. Sens. Appl., Elsevier, 2021: pp. 321–344.
[28] T. Hassan, A. Salam, A. Khan, S.U. Khan, H. Khanzada, M. Wasim, M.Q. Khan, I.S. Kim, Functional nanocomposites and their potential applications: A review, J. Polym. Res. 28 (2021).
[29] L.M. Tufvesson, P. Tufvesson, J.M. Woodley, P. Börjesson, Life cycle assessment in green chemistry: Overview of key parameters and methodological concerns, Int. J. Life Cycle Assess. 18 (2013) 431–444.
[30] D. Mulvaney, Green Metrics, Wiley VCH, 2012.
[31] B.T. Reid, S.M. Reed, Improved methods for evaluating the environmental impact of nanoparticle synthesis, Green Chem. 18 (2016) 4263–4269.
[32] M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E.J. Poinern, Green synthesis of metallic nanoparticles via biological entities, 2015.
[33] L.A. Kolahalam, I. V. Kasi Viswanath, B.S. Diwakar, B. Govindh, V. Reddy, Y.L.N. Murthy, Review on nanomaterials: Synthesis and applications, Mater. Today Proc. 18 (2019) 2182–2190.
[34] M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. Xiong, N.K. Niazi, Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake, J. Hazard. Mater. 325 (2017) 36–58.
[35] N. Asmathunisha, K. Kathiresan, Colloids and Surfaces B : Biointerfaces A review on biosynthesis of nanoparticles by marine organisms, Colloids Surfaces B Biointerfaces. 103 (2013) 283–287.
[36] S. Ying, Z. Guan, P.C. Ofoegbu, P. Clubb, C. Rico, F. He, J. Hong, Green synthesis of nanoparticles: Current developments and limitations, Environ. Technol. Innov. 26 (2022) 102336.
[37] R. de A.M.M. Neto, C.B.R.R. Santos, S.V.C.C. Henriques, L. de O. Machado, J.N. Cruz, C.H.T. d. P.T. de P. da Silva, L.B. Federico, E.H.C. d. C. de Oliveira, M.P.C.C. de Souza, P.N.B.B. da Silva, C.A. Taft, I.M. Ferreira, M.R.F.F. Gomes, Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations, J. Biomol. Struct. Dyn. (2020) 1–13.
[38] C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, J. Environ. Chem. Eng. 5 (2017) 2782–2799.
[39] J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation, J. Nanobiotechnology. 16 (2018) 1–24.
[40] M. Ovais, A.T. Khalil, N.U. Islam, I. Ahmad, M. Ayaz, M. Saravanan, Z.K. Shinwari, S. Mukherjee, Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles, Appl. Microbiol. Biotechnol. 102 (2018) 6799–6814.
[41] V.M. Almeida, Ê.R. Dias, B.C. Souza, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, R.F. Queiroz, A. Branco, Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays, J. Biomol. Struct. Dyn. 40 (2022) 7574–7583.
[42] B. Koul, A.K. Poonia, D. Yadav, J.O. Jin, Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects, Biomolecules. 11 (2021).
[43] S. Ghosh, R. Ahmad, M. Zeyaullah, S.K. Khare, Microbial Nano-Factories: Synthesis and Biomedical Applications, Front. Chem. 9 (2021).
[44] M. Gericke, A. Pinches, Microbial production of gold nanoparticles, Gold Bull. 39 (2006) 22–28.
[45] K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnology, Biol. Med. 6 (2010) 257–262.
[46] N. Shreyash, S. Bajpai, M.A. Khan, Y. Vijay, S.K. Tiwary, M. Sonker, Green Synthesis of Nanoparticles and Their Biomedical Applications: A Review, ACS Appl. Nano Mater. 4 (2021) 11428–11457.
[47] Y.H. Chung, H. Cai, N.F. Steinmetz, Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications, Adv. Drug Deliv. Rev. 156 (2020) 214–235.
[48] C.M.A. Rego, A.F. Francisco, C.N. Boeno, M. V Paloschi, J.A. Lopes, M.D.S. Silva, H.M. Santana, S.N. Serrath, J.E. Rodrigues, C.T.L. Lemos, R.S.S. Dutra, J.N. da Cruz, C.B.R. dos Santos, S. da S. Setúbal, M.R.M. Fontes, A.M. Soares, W.L. Pires, J.P. Zuliani, Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom, Sci. Rep. 12 (2022) 1–17.
[49] V.P. Aswathi, S. Meera, C.G.A. Maria, M. Nidhin, Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review, Nanotechnol. Environ. Eng. (2022).
[50] S.M. Abdelbasir, K.M. McCourt, C.M. Lee, D.C. Vanegas, Waste-Derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations, Front. Chem. 8 (2020) 1–18.
[51] P.R. Reddy, S.D. Ganesh, N. Saha, O. Zandraa, P. Sáha, Ecofriendly Synthesis of Silver Nanoparticles from Garden Rhubarb (Rheum rhabarbarum), J. Nanotechnol. 2016 (2016).
[52] R.S.R. Isaac, G. Sakthivel, C. Murthy, Green synthesis of gold and silver nanoparticles using averrhoa bilimbi fruit extract, J. Nanotechnol. 2013 (2013).
[53] L.D. Do Nascimento, A.A.B. de Moraes, K.S. da Costa, J.M.P. Galúcio, P.S. Taube, C.M.L. Costa, J.N. Cruz, E.H. de A. Andrade, L.J.G. de Faria, Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications, Biomolecules. 10 (2020) 1–37.
[54] M. Canle, M.I. Fernández, J.A. Santaballa, Applications of Nanomaterials in Environmental Remediation, 2021.
[55] H. Duan, D. Wang, Y. Li, Green chemistry for nanoparticle synthesis, Chem. Soc. Rev. 44 (2015) 5778–5792.
[56] E. Grossman, Tiny materials, big questions: How green is nanotechnology?, (2016)
[57] A.R.J.A. de M. Lima, A.S. Siqueira, M.L.S. Möller, R.C. de Souza, J.N. Cruz, A.R.J.A. de M. Lima, R.C. da Silva, D.C.F. Aguiar, J.L. da S.G.V. Junior, E.C. Gonçalves, In silico improvement of the cyanobacterial lectin microvirin and mannose interaction, J. Biomol. Struct. Dyn. (2020).
[58] S. Wong, B. Karn, Ensuring sustainability with green nanotechnology, Nanotechnology. 23 (2012) 11–13.
[59] U.S. Environmental Protection Agency, Research on Nanomaterials, Us Epa. (2016).
[60] N.S. J. Herrera, Microscopic and Spectroscopic Characterization of Nanoparticles, in: Drug Deliv. Nanoparticles Formul. Charact., 2020: pp. 259–271.
[61] H.Y. Joseph I. Goldstein, Practical Scanning Electron Microscopy, Springer US, 1975.
[62] R. &nbsp, S. Ananda, N.M.M. Gowda, K.R. Raksha, Synthesis of Niobium Doped ZnO Nanoparticles by Electrochemical Method: Characterization, Photodegradation of Indigo Carmine Dye and Antibacterial Study, Adv. Nanoparticles. 03 (2014) 133–147.
[63] C. Takahashi, N. Ogawa, Y. Kawashima, H. Yamamoto, Observation of antibacterial effect of biodegradable polymeric nanoparticles on Staphylococcus epidermidis biofilm using FE-SEM with an ionic liquid, Microscopy. 64 (2015) 169–180.
[64] M. Joshi, A. Bhattacharyya, S.W. Ali, Characterization techniques for nanotechnology applications in textiles, Indian J. Fibre Text. Res. 33 (2008) 304–317
[65] F.S. Alves, J. de A. Rodrigues Do Rego, M.L. Da Costa, L.F. Lobato Da Silva, R.A. Da Costa, J.N. Cruz, D.D.S.B. Brasil, Spectroscopic methods and in silico analyses using density functional theory to characterize and identify piperine alkaloid crystals isolated from pepper (Piper Nigrum L.), J. Biomol. Struct. Dyn. 38 (2020) 2792–2799.
[66] B. Schaffer, U. Hohenester, A. Trügler, F. Hofer, High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy, Phys. Rev. B – Condens. Matter Mater. Phys. 79 (2009) 1–4.
[67] D. Philip, Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis, Phys. E Low-Dimensional Syst. Nanostructures. 42 (2010) 1417–1424.
[68] B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes, J. Colloid Interface Sci. 490 (2017) 1–10.
[69] L.E.C. Van De Leemput, H. Van Kempen, Scanning tunnelling microscopy, Reports Prog. Phys. 55 (1992) 1165–1240.
[70] I. Lopez-Salido, D.C. Lim, R. Dietsche, N. Bertram, Y.D. Kim, Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM), J. Phys. Chem. B. 110 (2006) 1128–1136.
[71] A.M. Jackson, Y. Hu, P.J. Silva, F. Stellacci, From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: A scanning tunneling microscopy investigation, J. Am. Chem. Soc. 128 (2006) 11135–11149.
[72] A. Dubes, H. Parrot-Lopez, W. Abdelwahed, G. Degobert, H. Fessi, P. Shahgaldian, A.W. Coleman, Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins, Eur. J. Pharm. Biopharm. 55 (2003) 279–282.
[73] S.L. Upstone, Ultraviolet/Visible Light Absorption Spectrophotometry in Clinical Chemistry, Encycl. Anal. Chem. (2006) 1699–1714.
[74] R. Sanghi, P. Verma, Biomimetic synthesis and characterisation of protein capped silver nanoparticles, Bioresour. Technol. 100 (2009) 501–504.
[75] S. Parvathy, B.R. Venkatraman, Synthesis, characterization and antibacterial potential of silver nanoparticles using Solanum erianthum (D. Don) leaf extract, 1 (2015) 16–24.
[76] G. Mishra, V. Yadav, D.A. Saxena, Biosynthesis of Copper Nanoparticles Using Aqueous Ficus Racemosa Extract- Characterization and Study of Antimicrobial Effects, Am. J. Pharm. Heal. Res. 7 (2019) 63–76.
[77] S.T. Fardood, F. Moradnia, A. Ramazani, Green synthesis and characterisation of ZnMn2O4 nanoparticles for photocatalytic degradation of Congo red dye and kinetic study, Micro Nano Lett. 14 (2019) 986–991.
[78] S. Kavitha, M. Dhamodaran, R. Prasad, M. Ganesan, Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves, Int. Nano Lett. 7 (2017) 141–147.
[79] J.J. Yin, P.P. Fu, Application of Electron Spin Resonance to Study Food Anitoxidative and Prooxidative Activities, in: G.A.W. María Guðjónsdóttir, Peter S Belton (Ed.), Magn. Reson. Food Sci. Challenges a Chang. World, Royal Society of Chemistry, 2009: pp. 213–221.
[80] R. Elilarassi, G. Chandrasekaran, Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method, J. Mater. Sci. Mater. Electron. 21 (2010) 1168–1173.
[81] M. Goodarz Naseri, E. Bin Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method, J. Magn. Magn. Mater. 323 (2011) 1745–1749.
[82] M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method, Solid State Commun. 151 (2011) 1031–1035.
[83] D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study, Mater. Chem. Phys. 239 (2020) 122021.
[84] R.A. Costa, J.N. Cruz, F.C.A. Nascimento, S.O.S.G. Silva, S.O.S.G. Silva, M.C. Martelli, S.M.L. Carvalho, C.B.R. Santos, A.M.J.C. Neto, D.S.B. Brasil, Studies of NMR, molecular docking, and molecular dynamics simulation of new promising inhibitors of cruzaine from the parasite Trypanosoma cruzi, Med. Chem. Res. 28 (2019) 246–259.
[85] J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.P.S. Kushwaha, 57Fe Mössbauer spectroscopic study of nanostructured zinc ferrite, Hyperfine Interact. 183 (2008) 221–228.
[86] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guérault, J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite, J. Phys. Condens. Matter. 12 (2000) 7795–7805.
[87] S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chem. 13 (2011) 2638–2650.
[88] E. Turunc, R. Binzet, I. Gumus, G. Binzet, H. Arslan, Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide, Mater. Chem. Phys. 202 (2017) 310–319.
[89] K. Tahir, S. Nazir, B. Li, A. Ahmad, T. Nasir, A.U. Khan, S.A.A. Shah, Z.U.H. Khan, G. Yasin, M.U. Hameed, Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities, J. Photochem. Photobiol. B Biol. 164 (2016) 164–173.
[90] S.S. Sana, L.K. Dogiparthi, Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity, Mater. Lett. 226 (2018) 47–51.
[91] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng. C. 58 (2016) 36–43.
[92] G. Li, Y. Li, Z. Wang, H. Liu, Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes, Mater. Chem. Phys. 187 (2017) 133–140.
[93] J. Nasiri, M. Rahimi, Z. Hamezadeh, E. Motamedi, M.R. Naghavi, Fulfillment of green chemistry for synthesis of silver nanoparticles using root and leaf extracts of Ferula persica: Solid-state route vs. solution-phase method, J. Clean. Prod. 192 (2018) 514–530.
[94] A. Muthuvel, M. Jothibas, C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity, Nanotechnol. Environ. Eng. 5 (2020).
[95] N. González-Ballesteros, S. Prado-López, J.B. Rodríguez-González, M. Lastra, M.C. Rodríguez-Argüelles, Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells, Colloids Surfaces B Biointerfaces. 153 (2017) 190–198.
[96] M. Khatami, I. Sharifi, M.A.L. Nobre, N. Zafarnia, M.R. Aflatoonian, Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity, Green Chem. Lett. Rev. 11 (2018) 125–134.
[97] M. Leili, M. Fazlzadeh, A. Bhatnagar, Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions, Environ. Technol. (United Kingdom). 39 (2018) 1158–1172.
[98] L. Xu, Y.Y. Wang, J. Huang, C.Y. Chen, Z.X. Wang, H. Xie, Silver nanoparticles: Synthesis, medical applications and biosafety, Theranostics. 10 (2020) 8996–9031.
[99] X. Weng, X. Jin, J. Lin, R. Naidu, Z. Chen, Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles, Ecol. Eng. 97 (2016) 32–39.
[100] P.C. Nagajyothi, M. Pandurangan, D.H. Kim, T.V.M. Sreekanth, J. Shim, Green Synthesis of Iron Oxide Nanoparticles and Their Catalytic and In Vitro Anticancer Activities, J. Clust. Sci. 28 (2017) 245–257.
[101] P.C. Nagajyothi, P. Muthuraman, T.V.M. Sreekanth, D.H. Kim, J. Shim, Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells, Arab. J. Chem. 10 (2017) 215–225.
[102] R.G. Saratale, G.D. Saratale, H.S. Shin, J.M. Jacob, A. Pugazhendhi, M. Bhaisare, G. Kumar, New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications, Environ. Sci. Pollut. Res. 25 (2018) 10164–10183.