Nanotechnology in Environmental Clean-up


Nanotechnology in Environmental Clean-up

Anu Bansal, Rohan Samir Kumar Sachan, Jyostna Devgon, Inderpal Devgon, Arun Karnwal

Many technologies like adsorption, absorption, light-mediated catalysis, and various chemical reactions have been implied in the process of remediation of environmental pollutants. Still, environmental pollutants undoubtedly remain the major problem. The nanotechnologies have been explored for its use as capture and degradation of the pollutants. Nanotechnology or nanotech is simply defined as the use of particles or matters at nanoscale ranging from 1 to 100 nanometer. The reactivity of the nanotechnologies depends upon the surface area-to-volume of the nanoparticles utilized for the purpose. The most important factors for effective environmental remediation using nanoparticles are the detailed analysis of the in-situ location, kind of pollutants to be treated, and the decision of specific nanoparticles to be used is very critically important. The following chapter deals with the different kinds of nanotechnologies (Polymeric-based, semiconductor-based, pottery-based, metal-based, carbon-based nanoparticles) utilized for different environmental pollutions. The use of such nanoparticles on the remediation of environmental pollutants such as heavy metals, organic or inorganic matters, chemical herbicides, volatile compounds, aromatic compounds, etc. ubiquitously present in the environment (air, water, and soil). The implications of these nanoparticles are utilized in the environment on living organisms (plants, animals, and humans).

Nanotechnologies, Nanoparticles, Environmental Clean-Up, Ex-Situ Nanotechnology, In-Situ Nanotechnology

Published online , 30 pages

Citation: Anu Bansal, Rohan Samir Kumar Sachan, Jyostna Devgon, Inderpal Devgon, Arun Karnwal, Nanotechnology in Environmental Clean-up, Materials Research Proceedings, Vol. 145, pp 281-310, 2023


Part of the book on Nanobiomaterials

[1] M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications, 7 (2010) 1-37.
[2] T. v. Duncan, Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors, J Colloid Interface Sci. 363 (2011) 1-24.
[3] a Dowling, R. Clift, N. Grobert, D. Hutton, R. Oliver, O. O’neill, J. Pethica, N. Pidgeon, J. Porritt, J. Ryan, Et Al., Nanoscience and nanotechnologies : opportunities and uncertainties, 46 (2004) 618-618.
[4] W.K. Shin, J. Cho, A.G. Kannan, Y.S. Lee, D.W. Kim, Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries, 6 (2016) 1-10.
[5] J.E. Lee, N. Lee, T. Kim, J. Kim, T. Hyeon, Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications, Acc Chem Res. 44 (2011) 893-902.
[6] H. Barrak, T. Saied, P. Chevallier, G. Laroche, A. M’nif, A.H. Hamzaoui, Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@TMSEDTA, 12 (2019) 4340-4347.
[7] M. Mansha, A. Qurashi, N. Ullah, F.O. Bakare, I. Khan, Z.H. Yamani, Short communication, Ceram Int. 9 (2016) 11490-11495.
[8] I. Rawal, A. Kaur, Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application, Sens Actuators A Phys. 203 (2013) 92-102.
[9] H. Ullah, I. Khan, Z.H. Yamani, A. Qurashi, Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties, Ultrason Sonochem. 34 (2017) 484-490.
[10] M. Ganesh, P. Hemalatha, M.M. Peng, H.T. Jang, One pot synthesized Li, Zr doped porous silica nanoparticle for low temperature CO2 adsorption, 10 (2017) S1501-S1505.
[11] P.V.R.K. Ramacharyulu, R. Muhammad, J. Praveen Kumar, G.K. Prasad, P. Mohanty, Iron phthalocyanine modified mesoporous titania nanoparticles for photocatalytic activity and CO2 capture applications, 17 (2015) 26456-26462.
[12] M. Shaalan, M. Saleh, M. El-Mahdy, M. El-Matbouli, Recent progress in applications of nanoparticles in fish medicine: A review, Nanomedicine. 12 (2016) 701-710.
[13] K. Saeed Ibrahim, A. Info, Carbon nanotubes-properties and applications: a review, 14 (2013) 131-144.
[14] K. Saeed, I. Khan, Preparation and properties of single-walled carbon nanotubes/poly(butylene terephthalate) nanocomposites, 23 (2014) 53-58.
[15] K. Saeed, I. Khan, Preparation and characterization of single-walled carbon nanotube/nylon 6, 6 nanocomposites, 44 (2016) 435-444.
[16] J.M. Ngoy, N. Wagner, L. Riboldi, O. Bolland, A CO2 Capture Technology Using Multi-walled Carbon Nanotubes with Polyaspartamide Surfactant, Energy Procedia. 63 (2014) 2230-2248.
[17] E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine, Chem Soc Rev. 41 (2012) 2740-2779.
[18] W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, J.C. Nino, Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems, 89 (2006) 395-407.
[19] S. Thomas, B.S.P. Harshita, P. Mishra, S. Talegaonkar, Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery, Curr Pharm Des. 21 (2015) 6165-6188.
[20] S. Ali, I. Khan, S.A. Khan, M. Sohail, R. Ahmed, A. ur Rehman, M.S. Ansari, M.A. Morsy, Electrocatalytic performance of Ni@Pt core-shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction, 795 (2017) 17-25.
[21] I. Khan, A. Abdalla, A. Qurashi, Synthesis of hierarchical WO3 and Bi2O3/WO3 nanocomposite for solar-driven water splitting applications, Int J Hydrogen Energy. 42 (2017) 3431-3439.
[22] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem Soc Rev. 43 (2014) 7520-7535.
[23] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science. 287 (2000) 1989-1992.
[24] M. Mansha, I. Khan, N. Ullah, A. Qurashi, Synthesis, characterization and visible-light-driven photoelectrochemical hydrogen evolution reaction of carbazole-containing conjugated polymers, Int J Hydrogen Energy. 42 (2017) 10952-10961.
[25] J.P. Rao, K.E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters, Prog Polym Sci. 36 (2011) 887-913.
[26] A. Puri, K. Loomis, B. Smith, J.H. Lee, A. Yavlovich, E. Heldman, R. Blumenthal, Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic, Crit Rev Ther Drug Carrier Syst. 26 (2009) 523-580.
[27] M. Gujrati, A. Malamas, T. Shin, E. Jin, Y. Sun, Z.R. Lu, Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release, Mol Pharm. 11 (2014) 2734-2744.
[28] S. Mashaghi, T. Jadidi, G. Koenderink, A. Mashaghi, Lipid nanotechnology, Int J Mol Sci. 14 (2013) 4242-4282.
[29] M.K. Rawat, A. Jain, S. Singh, Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation, J Pharm Sci. 100 (2011) 2366-2378.
[30] E. Mirzadeh, K. Akhbari, Synthesis of nanomaterials with desirable morphologies from metal-organic frameworks for various applications, CrystEngComm. 18 (2016) 7410-7424.
[31] N. Khlebtsov, L. Dykmana, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem Soc Rev. 40 (2011) 1647-1671.
[32] N. Khlebtsov, L. Dykman, Plasmonic Nanoparticles, (2010) 37-85.
[33] N.G. Khlebtsov, L.A. Dykman, Optical properties and biomedical applications of plasmonic nanoparticles, J Quant Spectrosc Radiat Transf. 111 (2010) 1-35.
[34] J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate Control of Multishelled Co3O4 Hollow Microspheres as High-Performance Anode Materials in Lithium-Ion Batteries, 52 (2013) 6417-6420.
[35] I. Khan, S. Ali, M. Mansha, A. Qurashi, Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application, Ultrason Sonochem. 36 (2017) 386-392.
[36] I. Khan, A.A.M. Ibrahim, M. Sohail, A. Qurashi, Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for photoelectrochemical water splitting, Ultrason Sonochem. 37 (2017) 669-675.
[37] Y. Lykhach, S.M. Kozlov, T. Skála, A. Tovt, V. Stetsovych, N. Tsud, F. Dvořák, V. Johánek, A. Neitzel, J. Mysliveček, S. Fabris, V. Matolín, K.M. Neyman, J. Libuda, Counting electrons on supported nanoparticles, 15 (2015) 284-288.
[38] C. Dablemont, P. Lang, C. Mangeney, J.Y. Piquemal, V. Petkov, F. Herbst, G. Viau, FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina, 24 (2008) 5832-5841.
[39] V. Kestens, G. Roebben, J. Herrmann, Å. Jämting, V. Coleman, C. Minelli, C. Clifford, P.J. de Temmerman, J. Mast, L. Junjie, F. Babick, H. Cölfen, H. Emons, Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material, J Nanopart Res. 18 (2016).
[40] A. Sikora, A.G. Shard, C. Minelli, Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing, 32 (2016) 2216-2224.
[41] D.F. Swinehart, The Beer-Lambert Law, J Chem Educ. 39 (1962) 333-335.
[42] D. Liu, C. Li, F. Zhou, T. Zhang, H. Zhang, X. Li, G. Duan, W. Cai, Y. Li, Rapid Synthesis of Monodisperse Au Nanospheres through a Laser Irradiation -Induced Shape Conversion, Self-Assembly and Their Electromagnetic Coupling SERS Enhancement, 5 (2015) 1-9.
[43] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science (1979). 347 (2015) 970-974.
[44] Z.B. Yu, Y.P. Xie, G. Liu, G.Q. Lu, X.L. Ma, H.M. Cheng, Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution, J Mater Chem A Mater. 1 (2013) 2773-2776.
[45] K. Gupta, R.P. Singh, A. Pandey, A. Pandey, Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli, 4 (2013) 345-351.
[46] Pal, M., Pal, U., Jiménez, J. M. G. Y., & Pérez-Rodríguez, F. Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors, Nanoscale Res Lett. 7 (2012) 1-6.
[47] T. v. Torchynska, B. el Filali, T. v. Torchynska, B. el Filali, Emission, Defects, and Structure of ZnO Nanocrystal Films Obtained by Electrochemical Method, (2017).
[48] G. Lin, Q. Zhang, X. Lin, D. Zhao, R. Jia, N. Gao, Z. Zuo, X. Xu, D. Liu, Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles, RSC Adv. 5 (2015) 48275-48280.
[49] Jadhav, S. D., & Jadhav, M. S. Analysis of River Water Quality with Special Reference to Nitrate Concentration of Indrayani River, Pune. Parameters (2015).
[50] S.S. Kale, A.K. Kadam, S. Kumar, N.J. Pawar, Evaluating pollution potential of leachate from landfill site, from the Pune metropolitan city and its impact on shallow basaltic aquifers, Environ Monit Assess. 162 (2010) 327-346.
[51] X.Q. Li, W.X. Zhang, Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration, 22 (2006) 4638-4642.
[52] I. Sargin, T. Baran, G. Arslan, Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls, Sep Purif Technol. 247 (2020) 116987.
[53] M.M. Baig, S. Zulfiqar, M.A. Yousuf, I. Shakir, M.F.A. Aboud, M.F. Warsi, DyxMnFe2-xO4 nanoparticles decorated over mesoporous silica for environmental remediation applications, J Hazard Mater. 402 (2021) 123526.
[54] S.A. Akintelu, A.S. Folorunso, F.A. Folorunso, A.K. Oyebamiji, Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation, Heliyon. 6 (2020) e04508.
[55] G. Zhong, J. Huang, Z. Yao, B. Luo, K. Li, S. Xu, X. Fu, Y. Cao, Intrinsic acid resistance and high removal performance from the incorporation of nickel nanoparticles into nitrogen doped tubular carbons for environmental remediation, J Colloid Interface Sci. 566 (2020) 46-59.
[56] A. Parmar, G. Kaur, S. Kapil, V. Sharma, M.K. Choudhary, S. Sharma, Novel biogenic silver nanoparticles as invigorated catalytic and antibacterial tool: A cleaner approach towards environmental remediation and combating bacterial invasion, Mater Chem Phys. 238 (2019) 121861.
[57] W. Yan, A.A. Herzing, X.Q. Li, C.J. Kiely, W.X. Zhang, Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity, Environ Sci Technol. 44 (2010) 4288-4294.
[58] P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup, Nano Today. 1 (2006) 44-48.
[59] C.S.R. Rajan, Nanotechnology in Groundwater Remediation, (2011) 182-187.
[60] E. Shahsavari, G. Poi, A. Aburto-Medina, N. Haleyur, A.S. Ball, Bioremediation approaches for petroleum hydrocarbon-contaminated environments, 1 (2017) 21-41.
[61] F.E. Löffler, E.A. Edwards, Harnessing microbial activities for environmental cleanup, Curr Opin Biotechnol. 17 (2006) 274-284.
[62] K.L. Garner, A.A. Keller, Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies, 16 (2014).
[63] Y.P. Sun, X. qin Li, J. Cao, W. xian Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv Colloid Interface Sci. 120 (2006) 47-56.
[64] B. Karn, T. Kuiken, M. Otto, Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks, Environ Health Perspect. 117 (2009) 1813.
[65] T. Tosco, M. Petrangeli Papini, C. Cruz Viggi, R. Sethi, Nanoscale zerovalent iron particles for groundwater remediation: a review, J Clean Prod. 77 (2014) 10-21.
[66] G. Ghasemzadeh, M. Momenpour, F. Omidi, M.R. Hosseini, M. Ahani, A. Barzegari, Applications of nanomaterials in water treatment and environmental remediation, Front Environ Sci Eng. 8 (2014) 471-482.
[67] A. Koutsospyros, J. Pavlov, J. Fawcett, D. Strickland, B. Smolinski, W. Braida, Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction, J Hazard Mater. 219-220 (2012) 75-81.
[68] X. Nie, J. Liu, X. Zeng, D. Yue, Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles, 25 (2013) 473-478.
[69] N. Savage, M.S. Diallo, Nanomaterials and water purification: Opportunities and challenges, 7 (2005) 331-342.
[70] P. Liang, Y. Liu, L. Guo, J. Zeng, H. Lu, Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry, J Anal At Spectrom. 19 (2004) 1489-1492.
[71] N.C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment, Environ Sci Technol. 42 (2008) 4447-4453.
[72] E.A. Rogozea, A.R. Petcu, N.L. Olteanu, C.A. Lazar, D. Cadar, M. Mihaly, Tandem adsorption-photodegradation activity induced by light on NiO-ZnO p-n couple modified silica nanomaterials, Mater Sci Semicond Process. 57 (2017) 1-11.
[73] E.A. Rogozea, N.L. Olteanu, A.R. Petcu, C.A. Lazar, A. Meghea, M. Mihaly, Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles, 56 (2016) 45-48.
[74] I.S. Yunus, Harwin, A. Kurniawan, D. Adityawarman, A. Indarto, Nanotechnologies in water and air pollution treatment, 1 (2013) 136-148.
[75] E.F. Mohamed, Nanotechnology: Future of Environmental Air Pollution Control, 6 (2017) 429-454.
[76] J.Y. Kim, S.B. Shim, J.K. Shim, Effect of amphiphilic polyurethane nanoparticles on sorption-desorption of phenanthrene in aquifer material, J Hazard Mater. 98 (2003) 145-160.
[77] R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim, Environmental application of nanotechnology: air, soil, and water, 23 (2016) 13754-13788.
[78] J.C. Abanades, D. Alvarez, Conversion Limits in the Reaction of CO2 with Lime, 17 (2003) 308-315.
[79] Y. Wang, Y. Zhu, S. Wu, A new nano CaO-based CO2 adsorbent prepared using an adsorption phase technique, 218 (2013) 39-45.
[80] J. Jänchen, D.T.F. Möhlmann, H. Stach, Water and carbon dioxide sorption properties of natural zeolites and clay minerals at martian surface temperature and pressure conditions, Stud Surf Sci Catal. 170 (2007) 2116-2121.
[81] H.Y. Wang, A.C. Lua, Development of metallic nickel nanoparticle catalyst for the decomposition of methane into hydrogen and carbon nanofibers, 116 (2012) 26765-26775.
[82] N.H. Nguyen, H. Bai, Effect of washing pH on the properties of titanate nanotubes and its activity for photocatalytic oxidation of NO and NO2, Appl Surf Sci. 355 (2015) 672-680.
[83] Q. Liang, D. Zhao, Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles, J Hazard Mater. 271 (2014) 16-23.
[84] R. Liu, D. Zhao, Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil, Chemosphere. 91 (2013) 594-601.
[85] Y. Wang, Z. Fang, B. Liang, E.P. Tsang, Remediation of hexavalent chromium contaminated soil by stabilized nanoscale zero-valent iron prepared from steel pickling waste liquor, 247 (2014) 283-290.
[86] Z. Sheikholeslami, D.Y. Kebria, F. Qaderi, Application of γ-Fe2O3 nanoparticles for pollution removal from water with visible light, J Mol Liq. 299 (2020) 112118.
[87] H. Ramezanalizadeh, R. Peymanfar, N. Khodamoradipoor, Design and development of a novel lanthanum inserted CuCr2O4 nanoparticles photocatalyst for the efficient removal of water pollutions, Optik (Stuttg). 180 (2019) 113-124.
[88] P. Anju Rose Puthukkara, T. Sunil Jose, S. Dinoop lal, Chitosan stabilized Fe/Ni bimetallic nanoparticles for the removal of cationic and anionic triphenylmethane dyes from water, Environ Nanotechnol Monit Manag. 14 (2020) 100295.
[89] Y. Chen, H. Shi, H. Guo, C. Ling, X. Yuan, P. Li, Hydrated titanium oxide nanoparticles supported on natural rice straw for Cu (II) removal from water, Environ Technol Innov. 20 (2020) 101143.
[90] L.P. Burkhard, Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals, Environ Sci Technol. 34 (2000) 4663-4668.
[91] S.O. Obare, G.J. Meyer, Nanostructured Materials for Environmental Remediation of Organic Contaminants in Water, 39 (2011) 2549-2582.
[92] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem Rev. 95 (1995) 69-96.
[93] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, 1 (2000) 1-21.
[94] Y.C. Kim, K.H. Lee, S. Sasaki, K. Hashimoto, K. Ikebukuro, I. Karube, Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode, Anal Chem. 72 (2000) 3379-3382.
[95] D. Bahnemann, Photocatalytic water treatment: solar energy applications, 77 (2004) 445-459.
[96] P. v. Kamat, D. Meisel, Nanoscience opportunities in environmental remediation, 6 (2003) 999-1007.
[97] W.X. Zhang, Nanoscale iron particles for environmental remediation: An overview, 5 (2003) 323-332.
[98] S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron, Environ Sci Technol. 34 (2000) 2564-2569.
[99] S. Mitra, A. Sarkar, S. Sen, Removal of chromium from industrial effluents using nanotechnology: a review, 2 (2017) 1-14.
[100] B. Pandey, M. Fulekar, Nanotechnology: remediation technologies to clean up the environmental pollutants., (2012).
[101] M. Golobič, A. Jemec, D. Drobne, T. Romih, K. Kasemets, A. Kahru, Upon exposure to cu nanoparticles, accumulation of copper in the isopod porcellio scaber is due to the dissolved Cu ions inside the digestive tract, Environ Sci Technol. 46 (2012) 12112-12119.
[102] T. Masciangioli, W.X. Zhang, Peer Reviewed: Environmental Technologies at the Nanoscale, Environ Sci Technol. 37 (2003).
[103] Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats Around Us | NHBS Academic & Professional Books, (n.d.).
[104] J. Zhuang, R.W. Gentry, Environmental application and risks of nanotechnology: A balanced view, 1079 (2011) 41-67.
[105] L. Reijnders, Cleaner nanotechnology and hazard reduction of manufactured nanoparticles, J Clean Prod. 14 (2006) 124-133.
[106] S. Santra, P. Zhang, K. Wang, R. Tapec, W. Tan, Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers., Anal Chem. (2001).
[107] E. Oberdörster, S. Zhu, T.M. Blickley, P. McClellan-Green, M.L. Haasch, Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms, Carbon N Y. 44 (2006) 1112-1120.
[108] K.D. Grieger, A. Fjordbøge, N.B. Hartmann, E. Eriksson, P.L. Bjerg, A. Baun, Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?, J Contam Hydrol. 118 (2010) 165-183.
[109] Stockholm Convention on Persistent Organic Pollutants – United States Department of State, (n.d.).
[110] S.M. Taghavi, M. Momenpour, M. Azarian, M. Ahmadian, F. Souri, S.A. Taghavi, M. Sadeghain, M. Karchani, Effects of Nanoparticles on the Environment and Outdoor Workplaces, Electron Physician. 5 (2013) 706.
[111] M. Auffan, W. Achouak, J. Rose, M.A. Roncato, C. Chanéac, D.T. Waite, A. Masion, J.C. Woicik, M.R. Wiesner, J.Y. Bottero, Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli, Environ Sci Technol. 42 (2008) 6730-6735.
[112] C. Lee, Y.K. Jee, I.L. Won, K.L. Nelson, J. Yoon, D.L. Sedlak, Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli, Environ Sci Technol. 42 (2008) 4927-4933.
[113] M. Diao, M. Yao, Use of zero-valent iron nanoparticles in inactivating microbes, Water Res. 43 (2009) 5243-5251.
[114] X. Ma, A. Gurung, Y. Deng, Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species, Sci Total Environ. 443 (2013) 844-849.
[115] T. Ben-Moshe, S. Frenk, I. Dror, D. Minz, B. Berkowitz, Effects of metal oxide nanoparticles on soil properties, Chemosphere. 90 (2013) 640-646.
[116] C. Fajardo, L.T. Ortíz, M.L. Rodríguez-Membibre, M. Nande, M.C. Lobo, M. Martin, Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach, Chemosphere. 86 (2012) 802-808.
[117] Z. Tong, M. Bischoff, L. Nies, B. Applegate, R.F. Turco, Impact of Fullerene (C60) on a Soil Microbial Community, Environ Sci Technol. 41 (2007) 2985-2991.
[118] J. Wang, J.D. Gerlach, N. Savage, G.P. Cobb, Necessity and approach to integrated nanomaterial legislation and governance, 442 (2013) 56-62.
[119] M. Geiser, B. Rothen-Rutishauser, N. Kapp, S. Schürch, W. Kreyling, H. Schulz, M. Semmler, V. Im Hof, J. Heyder, P. Gehr, Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells, Environ Health Perspect. 113 (2005) 1555.
[120] A.E. Porter, M. Gass, K. Muller, J.N. Skepper, P. Midgley, M. Welland, Visualizing the Uptake of C60 to the Cytoplasm and Nucleus of Human Monocyte-Derived Macrophage Cells Using Energy-Filtered Transmission Electron Microscopy and Electron Tomography, Environ Sci Technol. 41 (2007) 3012-3017.
[121] A. Nel, T. Xia, L. Mädler, N. Li, Toxic potential of materials at the nanolevel, Science. 311 (2006) 622-627.
[122] G. Bhabra, A. Sood, B. Fisher, L. Cartwright, M. Saunders, W.H. Evans, A. Surprenant, G. Lopez-Castejon, S. Mann, S.A. Davis, L.A. Hails, E. Ingham, P. Verkade, J. Lane, K. Heesom, R. Newson, C.P. Case, Nanoparticles can cause DNA damage across a cellular barrier, Nat Nanotechnol. 4 (2009) 876-883.
[123] H.L. Karlsson, P. Cronholm, Y. Hedberg, M. Tornberg, L. de Battice, S. Svedhem, I.O. Wallinder, Cell membrane damage and protein interaction induced by copper containing nanoparticles-Importance of the metal release process, Toxicology. 313 (2013) 59-69.