Nanotechnology: Fundamental Aspects and Biomedical and Technological Applications


Nanotechnology: Fundamental Aspects and Biomedical and Technological Applications

Indrani Das Sarma, Debashis Bhowmick, Pawan Bhilkar, Rohit Sharma Ratiram G. Chaudhary

Richard Feynman’s famous talk titled ‘There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics’ at Caltech’s annual American Physical Society meeting in 1959 highlighted the importance of nanoscience and opened a whole new vista of the nanoworld. In the International System of Units nanoscience, the prefix nano means one-billionth or 10-9. So 1 nanometer (nm) = 10–9 m. Nanomaterials are defined as a set of substances whose at least one dimension is approximately less than 100 nm and show special properties due to minuscule size. For instance, variable colors shown by gold and silver nanoparticles, change in the oxidation state of nanosized aluminum crystals, and so on. Nanomaterials already exist in nature. However, the recent advancements in microscopy and technology have empowered scientists and technologists to witness phenomena occurring naturally at the nanoscale dimension. These phenomena are mostly based on quantum mechanical interactions and expanded surface area. The nanomaterials can be classified in various modes: dimension, composition, morphology, geometry, etc. This chapter intend to overview the classification of nanomaterials and their applications in the different fields.

Nanomaterials, Quantum Dots, Nanomaterials in Biomedicals, Nanomaterials in Agriculture

Published online , 18 pages

Citation: Indrani Das Sarma, Debashis Bhowmick, Pawan Bhilkar, Rohit Sharma Ratiram G. Chaudhary, Nanotechnology: Fundamental Aspects and Biomedical and Technological Applications, Materials Research Proceedings, Vol. 145, pp 1-18, 2023


Part of the book on Nanobiomaterials

[1] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine, Molecules. 25 (2020) 112.
[2] Munir Nayfeh, Nanoeffects in Ancient Technology and Art and in Space, in: Fundam. Appl. Nano Silicon Plasmon. Fullerines, Elsevier, 2018: pp. 497–518.
[3] D. Pal, C.K. Sahu, A. Haldar, Bhasma: The ancient Indian nanomedicine, J. Adv. Pharm. Technol. Res. 5 (2014) 4–12.
[4] S. Nagarajan, S. Krishnaswamy, B. Pemiah, K. Rajan, U. Krishnan, S. Sethuraman, Scientific insights in the preparation and characterisation of a lead-based naga bhasma, Indian J. Pharm. Sci. 76 (2014) 38–45
[6] S. Veprek, A.S. Argon, Mechanical properties of superhard nanocomposites, Surf. Coatings Technol. 146–147 (2001) 175–182.
[7] K. Pan, Q. Zhong, Organic Nanoparticles in Foods: Fabrication, Characterization, and Utilization, Annu. Rev. Food Sci. Technol. 7 (2016) 245–266.
[8] W.K. Oh, H. Yoon, J. Jang, Size control of magnetic carbon nanoparticles for drug delivery, Biomaterials. 31 (2010) 1342–1348.
[9] S. Chandra, P. Das, S. Bag, D. Laha, P. Pramanik, Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles, nanoscale. 3 (2011) 1533–1540.
[10] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908–931.
[11] P.B. Chouke, T. Shrirame, A.K. Potbhare, A. Mondal, A.R. Chaudhary, S. Mondal, S.R. Thakare, E. Nepovimova, M. Valis, K. Kuca, R. Sharma, R.G. Chaudhary, Bioinspired metal/metal oxide nanoparticles: A road map to potential applications, Mater. Today Adv. 16(2022) 100314.
[12] P. Iqbal, J.A. Preece, P.M. Mendes, Nanotechnology: The “Top-Down” and “Bottom-Up” Approaches, in: Supramol. Chem., John Wiley & Sons, Ltd, Chichester, UK, 2012.
[13] R. Maheswaran, B.P. Shanmugavel, A Critical Review of the Role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications, J. Electron. Mater. 51 (2022) 2786–2800.
[14] G. A.I. Quantum, Hartree-Fock on a superconducting qubit quantum computer, science (80-. ). 369 (2020) 1084–1089.
[15] N.C. da R. Galucio, D. de A. Moysés, J.R.S. Pina, P.S.B. Marinho, P.C. Gomes Júnior, J.N. Cruz, V.V. Vale, A.S. Khayat, A.M. do R. Marinho, Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn, Arab. J. Chem. 15 (2022) 103589.
[16] L. Sun, Y. Hao, C.L. Chien, P.C. Searson, P.C. Searson, Tuning the properties of magnetic nanowires, I.B.M. J. Res. Dev. 49 (2005) 79–102.
[17] D. Dubuc, K. Grenier, L. Rabbia, A. Tackac, M. Saadaoui, P. Pons, P. Caudrillier, O. Pascal, H. Aubert, H. Baudrand, J. Tao, P. Combes, J. Graffeuil, R. Plana, MEMS and NEMS technologies for wireless communications, in: 2002 23rd Int. Conf. Microelectron. M.I.E.L. 2002 – Proc., IEEE, 2002: pp. 91–98.
[18] K.C. Liu, W.H. Tzeng, K.M. Chang, Y.C. Chan, C.C. Kuo, C.W. Cheng, Transparent resistive random access memory (T.R.R.A.M.) based on Gd 2O3 film and its resistive switching characteristics, in: I.N.E.C. 2010 – 2010 3rd Int. Nanoelectron. Conf. Proc., IEEE, 2010: pp. 898–899.
[19] S. Sharma, H.I. Rasool, V. Palanisamy, C. Mathisen, M. Schmidt, D.T. Wong, J.K. Gimzewski, Nano core-A Review on 5G Mobile Communications, A.C.S. Nano. 4 (2010) 1921–1926.
[20] D.B. Buxton, S.C. Lee, S.A. Wickline, M. Ferrari, Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group, Circulation. 108 (2003) 2737–2742.
[21] W. Ma, Y. Zhan, Y. Zhang, C. Mao, X. Xie, Y. Lin, The biological applications of D.N.A. nanomaterials: current challenges and future directions, Signal Transduct. Target. Ther. 6 (2021) 351.
[22] H. Chopra, A.K. Mishra, I. Singh, Y.K. Mohanta, R. Sharma, T. Bin Emran, S. Bibi, Nano-chitosan: A novel material for glioblastoma treatment, Int. J. Surg. 104 (2022) 106713.
[23] C.B.R. Santos, K.L.B. Santos, J.N. Cruz, F.H.A. Leite, R.S. Borges, C.A. Taft, J.M. Campos, C.H.T.P. Silva, Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs, J. Biomol. Struct. Dyn. 39 (2021) 3115–3127.
[24] R. Sharma, P. Bedarkar, D. Timalsina, A. Chaudhary, P.K. Prajapati, Bhavana, an Ayurvedic Pharmaceutical Method and a Versatile Drug Delivery Platform to Prepare Potentiated Micro-Nano-Sized Drugs: Core Concept and Its Current Relevance, Bioinorg. Chem. Appl. 2022 (2022) 1–15.
[25] R. Sharma, P.K. Prajapati, Nanotechnology in medicine: Leads from Ayurveda, J. Pharm. Bioallied Sci. 8 (2016) 80–81.
[26] M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, A. Triller, Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking, Science (80-. ). 302 (2003) 442–445.
[27] F.S. Alves, J. de A. Rodrigues Do Rego, M.L. Da Costa, L.F. Lobato Da Silva, R.A. Da Costa, J.N. Cruz, D.D.S.B. Brasil, Spectroscopic methods and in silico analyses using density functional theory to characterize and identify piperine alkaloid crystals isolated from pepper (Piper Nigrum L.), J. Biomol. Struct. Dyn. 38 (2020) 2792–2799.
[28] X. Gao, Y. Xing, L.W.K. Chung, S. Nie, Quantum Dot Nanotechnology for Prostate Cancer Research, in: Prostate Cancer, Humana Press, Totowa, NJ, 2007: pp. 231–244.
[29] A.R. Kirtane, M. Verma, P. Karandikar, J. Furin, R. Langer, G. Traverso, Nanotechnology approaches for global infectious diseases, Nat. Nanotechnol. 16 (2021) 369–384.
[30] E.E. Ngowi, Y.Z. Wang, L. Qian, Y.A.S.H. Helmy, B. Anyomi, T. Li, M. Zheng, E.S. Jiang, S.F. Duan, J.S. Wei, D.D. Wu, X.Y. Ji, The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders, Front. Bioeng. Biotechnol. 9 (2021).
[31] A.R.J.A. de M. Lima, A.S. Siqueira, M.L.S. Möller, R.C. de Souza, J.N. Cruz, A.R.J.A. de M. Lima, R.C. da Silva, D.C.F. Aguiar, J.L. da S.G.V. Junior, E.C. Gonçalves, In silico improvement of the cyanobacterial lectin microvirin and mannose interaction, J. Biomol. Struct. Dyn. (2020).
[32] Y. Deng, X. Zhang, H. Shen, Q. He, Z. Wu, W. Liao, M. Yuan, Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases, Front. Bioeng. Biotechnol. 7 (2020).
[33] M. Fathi-Achachelouei, H. Knopf-Marques, C.E. Ribeiro da Silva, J. Barthès, E. Bat, A. Tezcaner, N.E. Vrana, Use of Nanoparticles in Tissue Engineering and Regenerative Medicine, Front. Bioeng. Biotechnol. 7 (2019).
[34] S.A. Saunders, Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics, Clin. Cosmet. Investig. Dent. 1 (2009) 47–61.
[35] B. Mangla, S. Javed, M.H. Sultan, W. Ahsan, G. Aggarwal, K. Kohli, Nanocarriers-Assisted Needle-Free Vaccine Delivery Through Oral and Intranasal Transmucosal Routes: A Novel Therapeutic Conduit, Front. Pharmacol. 12 (2022).
[36] Y. Wang, L. Deng, S.M. Kang, B.Z. Wang, Universal influenza vaccines: from viruses to nanoparticles, Expert Rev. Vaccines. 17 (2018) 967–976.
[37] P. Chaudhary, R. Sharma, S. Rawat, P. Janmeda, Antipyretic Medicinal Plants, Phytocompounds, and Green Nanoparticles: An Updated Review, Curr. Pharm. Biotechnol. 24 (2022) 23–49.
[38] S. Bawazeer, A. Rauf, T. Bin Emran, A.S.M. Aljohani, F.A. Alhumaydhi, Z. Khan, L. Ahmad, H.A. Hemeg, N. Muhammad, R. Sharma, A. Maalik, I. Khan, Biogenic Synthesis of Silver Nanoparticles Using Rhazya stricta Extracts and Evaluation of Its Biological Activities, J. Nanomater. 2022 (2022) 1–11.
[39] P. Kumari, K. Raina, S. Thakur, R. Sharma, N. Cruz-Martins, P. Kumar, K. Barman, S. Sharma, D. Kumar, P.K. Prajapati, R. Sharma, A. Chaudhary, Ethnobotany, Phytochemistry and Pharmacology of Palash (Butea monosperma (Lam.) Taub.): a Systematic Review, Curr. Pharmacol. Reports. 8 (2022) 188–204.
[40] M.M. Rhaman, M.R. Islam, S. Akash, M. Mim, M. Noor alam, E. Nepovimova, M. Valis, K. Kuca, R. Sharma, Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance, Front. Cell Dev. Biol. 10 (2022).
[41] R. Sharma, N. Garg, D. Verma, P. Rathi, V. Sharma, K. Kuca, P.K. Prajapati, Indian medicinal plants as drug leads in neurodegenerative disorders, in: Nutraceuticals Brain Heal. Beyond, Elsevier, 2020: pp. 31–45.
[42] R. Sharma, A. Kabra, M.M. Rao, P.K. Prajapati, Herbal and Holistic Solutions for Neurodegenerative and Depressive Disorders: Leads from Ayurveda, Curr. Pharm. Des. 24 (2018) 2597–2608.
[43] R. Sharma, K. Kuca, E. Nepovimova, A. Kabra, M.M. Rao, P.K. Prajapati, Traditional Ayurvedic and herbal remedies for Alzheimer’s disease: from bench to bedside, Expert Rev. Neurother. 19 (2019) 359–374.
[44] A. Rauf, T. Abu-Izneid, A.A. Khalil, N. Hafeez, A. Olatunde, M. Rahman, P. Semwal, Y.S. Al-Awthan, O.S. Bahattab, I.N. Khan, M.A. Khan, R. Sharma, Nanoparticles in clinical trials of COVID-19: An update, Int. J. Surg. 104 (2022) 106818.
[45] C.M.A. Rego, A.F. Francisco, C.N. Boeno, M. V. Paloschi, J.A. Lopes, M.D.S. Silva, H.M. Santana, S.N. Serrath, J.E. Rodrigues, C.T.L. Lemos, R.S.S. Dutra, J.N. da Cruz, C.B.R. dos Santos, S. da S. Setúbal, M.R.M. Fontes, A.M. Soares, W.L. Pires, J.P. Zuliani, Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom, Sci. Rep. 12 (2022) 1–17.
[46] Z.A.A. Aziz, H. Mohd-Nasir, A. Ahmad, S.H. Siti, W.L. Peng, S.C. Chuo, A. Khatoon, K. Umar, A.A. Yaqoob, M.N. Mohamad Ibrahim, Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care, Front. Chem. 7 (2019).
[47] V. Gupta, S. Mohapatra, H. Mishra, U. Farooq, K. Kumar, M.J. Ansari, M.F. Aldawsari, A.S. Alalaiwe, M.A. Mirza, Z. Iqbal, Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements, Gels. 8 (2022) 173.
[48] G. Moxham, Protective paints, Nat. Nanotechnol. (2008).
[49] S. Smulders, K. Luyts, G. Brabants, K. Van Landuyt, C. Kirschhock, E. Smolders, L. Golanski, J. Vanoirbeek, P.H.M. Hoet, Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice, Toxicol. Sci. 141 (2014) 132–140.
[50] N.B. Singh, R.G. Chaudhary,M.F. Desimone, A. Agrawal, S. K. Shukla, Green synthesized nanomaterials for safe technology in sustainable agriculture, Curr. Pharm. Biotechnol. 24 (2023) 61-85.
[51] L. Zhao, L. Lu, A. Wang, H. Zhang, M. Huang, H. Wu, B. Xing, Z. Wang, R. Ji, Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance, J. Agric. Food Chem. 68 (2020) 1935–1947.
[52] J. Ubbink, J. Krüger, Physical approaches for the delivery of active ingredients in foods, Trends Food Sci. Technol. 17 (2006) 244–254.
[53] Nitin Yadav, Anil K. Singh,Talha Bin Emran
,Ratiram G. Chaudhary, Rohit Sharma
,Swati Sharma, and Kalyan Barman, Salicylic acid treatment reduces lipid peroxidation and chlorophyll degradation and preserves quality attributes of pointed gourd fruit, J. Food Quality, (2022) 2090562.
[54] T. Singh, S. Shukla, P. Kumar, V. Wahla, V.K. Bajpai, Application of nanotechnology in food science: Perception and overview, Front. Microbiol. 8 (2017).
[55] S.D.F. Mihindukulasuriya, L.T. Lim, Nanotechnology development in food packaging: A review, Trends Food Sci. Technol. 40 (2014) 149–167.
[56] S.H. Othman, Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler, Agric. Agric. Sci. Procedia. 2 (2014) 296–303.
[57] Y. Jiang, X. Quan, G. Jiang, X. Li, Current Prospective on Environmental Nanotechnology Research in China, Environ. Sci. Technol. 53 (2019) 4001–4002.
[58] M.H. Lee, K. Cho, A.P. Shah, P. Biswas, Nanostructured sorbents for capture of cadmium species in combustion environments, Environ. Sci. Technol. 39 (2005) 8481–8489.
[59] E. Pitoniak, C.Y. Wu, D.W. Mazyck, K.W. Powers, W. Sigmund, Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal, Environ. Sci. Technol. 39 (2005) 1269–1274.
[60] P. Biswas, M.R. Zachariah, In situ immobilization of lead species in combustion environments by injection of gas phase silica sorbent precursors, Environ. Sci. Technol. 31 (1997) 2455–2463.
[61] A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc. 127 (2005) 17998–17999.
[62] C. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Chemistry: A chromium terephthalate-based solid with unusually large pore volumes and surface area, science (80-. ). 309 (2005) 2040–2042.
[63] A. Kaur, Nanoscavengers for the Waste Water Remediation, in: D.G.K. Prof. Rajeev Kumar, Dr. Raman Kumar (Ed.), New Front. Nanomater. Environ. Sci., Springer Singapore, Singapore, 2021: pp. 73–89.
[64] R.G. Chaudhary, V. Sonkusare, G. Bhusari, A. Mondal, A.K. Potbhare, R. Sharma, H.D. Juneja, A.A. Abdala, Preparation of mesoporous ThO2 nanoparticles: influence of calcination on morphology and visible-Light-driven photocatalytic degradation of indigo carmine and methylene blue, Enviornmental Research, 222 (2023) 115363.
[65] W. Chen, L. Duan, D. Zhu, Adsorption of polar and nonpolar organic chemicals to carbon nanotubes, Environ. Sci. Technol. 41 (2007) 8295–8300.
[66] A. Khalid, P. Ahmad, A. Khan, S. Muhammad, M.U. Khandaker, M.M. Alam, M. Asim, I.U. Din, R.G. Chaudhary, D. Kumar, R. Sharma, M.R.I. Faruque, T. Bin Emran, Effect of Cu Doping on ZnO Nanoparticles as a Photocatalyst for the Removal of Organic Wastewater, Bioinorg. Chem. Appl. 2022 (2022) 1–12.
[67] J.M. Schnorr, T.M. Swager, Emerging applications of carbon nanotubes, Chem. Mater. 23 (2011) 646–657.
[68] X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: A review, Chem. Eng. J. 170 (2011) 395–410.
[69] L.R. Khot, S. Sankaran, J.M. Maja, R. Ehsani, E.W. Schuster, Applications of nanomaterials in agricultural production and crop protection: A review, Crop Prot. 35 (2012) 64–70.