Magnetic Nanoparticles for Immune System Related Diseases Treatment


Magnetic Nanoparticles for Immune System Related Diseases Treatment

Federico G. Baudou, Exequiel Giorgi, María Eugenia Diaz, Gabriela F. Rocha, Florencia S. Conti, Sofia Genovés, Gabriel A. De Diego, Liliana N. Guerra, Mauricio C.De Marzi

Nanotechnology is a continuously rising field with different and varied purposes. Nanoparticles (NPs) are defined as particles between 1 and 100 nanometers in diameter, but within this classification larger particles can be incorporated up to 500 nm. Magnetic NPs (MNPs) are generally composed with magnetic elements such as nickel, cobalt and iron, and have the ability to be manipulated through a magnetic field. Recently, these have been the subject of numerous studies because their attractive properties for several potential applications. Among them, we can include its use for diagnosis and medical treatment (theragnosis). Due to their properties, MNPs could be used with the aim of developing immunomodulatory therapies and deal with infectious diseases, cancer, allergies, autoimmune diseases, etc. The use of MNPs provides a novel tool to manipulate the immune response towards a profile according to the proposed objectives. That is why this chapter describes the interaction of MNPs with the immune system as well as its possible applications in immunomodulatory therapies.

Magnetic Nanoparticles, Immune System, Infectious Diseases, Cancer, Allergies, Autoimmunity

Published online , 25 pages

Citation: Federico G. Baudou, Exequiel Giorgi, María Eugenia Diaz, Gabriela F. Rocha, Florencia S. Conti, Sofia Genovés, Gabriel A. De Diego, Liliana N. Guerra, Mauricio C.De Marzi, Magnetic Nanoparticles for Immune System Related Diseases Treatment, Materials Research Foundations, Vol. 143, pp 253-277, 2023


Part of the book on Magnetic Nanoparticles for Biomedical Applications

[1] O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery, ACS Nano. 3 (2009) 16–20.
[2] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine, Molecules. 25 (2020) 1–15.
[3] K. Wu, D. Su, J. Liu, R. Saha, J.P. Wang, Magnetic nanoparticles in nanomedicine: A review of recent advances, Nanotechnology. 30 (2019).
[4] T. Vangijzegem, D. Stanicki, S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics, Expert Opin. Drug Deliv. 16 (2019) 69–78.
[5] A. Farzin, S.A. Etesami, J. Quint, A. Memic, A. Tamayol, Magnetic Nanoparticles in Cancer Therapy and Diagnosis, Adv. Healthc. Mater. 9 (2020) 1–29.
[6] R. Medzhitov, C.A. Janeway, Innate immunity: Impact on the adaptive immune response, Curr. Opin. Immunol. 9 (1997) 4–9.
[7] L.B. Nicholson, The immune system, Essays Biochem. 60 (2016) 275–301.
[8] M.F. Flajnik, L. Du Pasquier, Evolution of innate and adaptive immunity: can we draw a line?, Trends Immunol. 25 (2004) 640–644.
[9] N.I. Nii-Trebi, Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges, Biomed Res. Int. 2017 (2017).
[10] National Institutes of Health (US), Biological Sciences Curriculum Study, Understanding Emerging and Re-emerging Infectious Diseases, in: NIH Curric. Suppl. Ser., 2007.
[11] B.A. Aderibigbe, Metal-based nanoparticles for the treatment of infectious diseases, Molecules. 22 (2017).
[12] World Health Organization, Antibiotic resistance, (2020).
[13] M.A.A. Majumder, S. Rahman, D. Cohall, A. Bharatha, K. Singh, M. Haque, M. Gittens-St Hilaire, Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health, Infect. Drug Resist. 13 (2020) 4713–4738.
[14] R. Costo, M.P. Morales, S. Veintemillas-Verdaguer, Improving magnetic properties of ultrasmall magnetic nanoparticles by biocompatible coatings, J. Appl. Phys. 117 (2015) 1–8.
[15] P. Dutta, M.S. Seehra, S. Thota, J. Kumar, A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4, J. Phys. Condens. Matter. 20 (2008).
[16] S.M. Devi, A. Nivetha, I. Prabha, Superparamagnetic Properties and Significant Applications of Iron Oxide Nanoparticles for Astonishing Efficacy—a Review, J. Supercond. Nov. Magn. 32 (2019) 127–144.
[17] L. Xiang, O.U. Akakuru, C. Xu, A. Wu, Harnessing the intriguing properties of magnetic nanoparticles to detect and treat bacterial infections, Magnetochemistry. 7 (2021) 1–13.
[18] Z. Xiao, Q. Zhang, X. Guo, J. Villanova, Y. Hu, I. Külaots, D. Garcia-Rojas, W. Guo, V.L. Colvin, Libraries of Uniform Magnetic Multicore Nanoparticles with Tunable Dimensions for Biomedical and Photonic Applications, ACS Appl. Mater. Interfaces. 12 (2020) 41932–41941.
[19] S. Maiti, K.K. Sen, Introductory Chapter: Drug Delivery Concepts, Adv. Technol. Deliv. Ther. (2017) 1–12.
[20] M. Torrice, Does nanomedicine have a delivery problem?, ACS Cent. Sci. 2 (2016) 434–437.
[21] M.W. Freeman, A. Arrott, J.H.L. Watson, Magnetism in medicine, J. Appl. Phys. 404 (1960) 127–129.
[22] H. Wen, H. Jung, X. Li, Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges, AAPS J. 17 (2015) 1327–1340.
[23] D.D. Stueber, J. Villanova, I. Aponte, Z. Xiao, V.L. Colvin, Magnetic nanoparticles in biology and medicine: Past, present, and future trends, Pharmaceutics. 13 (2021).
[24] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater. 12 (2013) 991–1003.
[25] J. Chen, S.M. Andler, J.M. Goddard, S.R. Nugen, V.M. Rotello, Integrating recognition elements with nanomaterials for bacteria sensing, Chem. Soc. Rev. 46 (2017) 1272–1283.
[26] K.E. Albinali, M.M. Zagho, Y. Deng, A.A. Elzatahry, A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems, Int. J. Nanomedicine. 14 (2019) 1707–1723.
[27] W. Cai, X. Weng, W. Zhang, Z. Chen, Green magnetic nanomaterial as antibiotic release vehicle: The release of pefloxacin and ofloxacin, Mater. Sci. Eng. C. 118 (2021) 111439.
[28] A. Mohapatra, M.A. Harris, D. LeVine, M. Ghimire, J.A. Jennings, B.I. Morshed, W.O. Haggard, J.D. Bumgardner, S.R. Mishra, T. Fujiwara, Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles, J. Biomed. Mater. Res. – Part B Appl. Biomater. 106 (2018) 2169–2176.
[29] L. de A.S. de Toledo, H.C. Rosseto, M.L. Bruschi, Iron oxide magnetic nanoparticles as antimicrobials for therapeutics, Pharm. Dev. Technol. 23 (2018) 316–323.
[30] E.N. Taylor, T.J. Webster, The use of superparamagnetic nanoparticles for prosthetic biofilm prevention., Int. J. Nanomedicine. 4 (2009) 145–152.
[31] G. Subbiahdoss, S. Sharifi, D.W. Grijpma, S. Laurent, H.C. Van Der Mei, M. Mahmoudi, H.J. Busscher, Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci, Acta Biomater. 8 (2012) 2047–2055.
[32] C. Xu, O.U. Akakuru, J. Zheng, A. Wu, Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections, Front. Bioeng. Biotechnol. 7 (2019) 1–15.
[33] B.M. Geilich, I. Gelfat, S. Sridhar, A.L. van de Ven, T.J. Webster, Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication, Biomaterials. 119 (2017) 78–85.
[34] H. Maleki, A. Rai, S. Pinto, M. Evangelista, R.M.S. Cardoso, C. Paulo, T. Carvalheiro, A. Paiva, M. Imani, A. Simchi, L. Durães, A. Portugal, L. Ferreira, High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core-Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide, ACS Appl. Mater. Interfaces. 8 (2016) 11366–11378.
[35] M. Chakravarty, A. Vora, Nanotechnology-based antiviral therapeutics, Drug Deliv. Transl. Res. 11 (2021) 748–787.
[36] K. Maduray, R. Parboosing, Metal Nanoparticles: a Promising Treatment for Viral and Arboviral Infections, Biol. Trace Elem. Res. 199 (2021) 3159–3176.
[37] S.J. Park, H.H. Park, S.Y. Kim, S.J. Kim, K. Woo, G.P. Ko, Antiviral properties of silver nanoparticles on a magnetic hybrid colloid, Appl. Environ. Microbiol. 80 (2014) 2343–2350.
[38] R.D. Jayant, Layer-by-Layer (LbL) assembly of anti HIV drug for sustained release to brain using magnetic nanoparticle, J. Neuroimmune Pharmacol. 9 (2014)
[39] R.D. Jayant, V.S.R. Atluri, M. Agudelo, V. Sagar, A. Kaushik, M. Nair, Sustained-release nanoART formulation for the treatment of neuroAIDS, Int. J. Nanomedicine. 10 (2015) 1077–1093.
[40] R. Medhi, P. Srinoi, N. Ngo, H.V. Tran, T.R. Lee, Nanoparticle-Based Strategies to Combat COVID-19, ACS Appl. Nano Mater. 3 (2020) 8557–8580.
[41] L. Bromberg, D.J. Bromberg, T.A. Hatton, I. Bandín, A. Concheiro, C. Alvarez-Lorenzo, Antiviral properties of polymeric aziridine- and biguanide-modified core-shell magnetic nanoparticles, Langmuir. 28 (2012) 4548–4558.
[42] K. Niemirowicz, B. Durnaś, G. Tokajuk, K. Głuszek, A.Z. Wilczewska, I. Misztalewska, J. Mystkowska, G. Michalak, A. Sodo, M. Wątek, B. Kiziewicz, S. Góźdź, S. Głuszek, R. Bucki, Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics, Nanomedicine Nanotechnology, Biol. Med. 12 (2016) 2395–2404.
[43] M. Bushman, L. Morton, N. Duah, N. Quashie, B. Abuaku, K.A. Koram, P.R. Dimbu, M. Plucinski, J. Gutman, P. Lyaruu, S. Patrick Kachur, J.C. de Roode, V. Udhayakumar, Within-host competition and drug resistance in the human malaria parasite plasmodium falciparum, Proc. R. Soc. B Biol. Sci. 283 (2016).
[44] X. Wang, Y. Xie, N. Jiang, J. Wang, H. Liang, D. Liu, N. Yang, X. Sang, Y. Feng, R. Chen, Q. Chen, Enhanced Antimalarial Efficacy Obtained by Targeted Delivery of Artemisinin in Heparin-Coated Magnetic Hollow Mesoporous Nanoparticles, ACS Appl. Mater. Interfaces. 13 (2021) 287–297.
[45] M.H. Kim, I. Yamayoshi, S. Mathew, H. Lin, J. Nayfach, S.I. Simon, Magnetic nanoparticle targeted hyperthermia of cutaneous staphylococcus aureus infection, Ann. Biomed. Eng. 41 (2013) 598–609.
[46] C. Chen, L. Chen, Y. Yi, C. Chen, L.F. Wu, T. Song, Killing of Staphylococcus aureus via magnetic hyperthermia mediated by magnetotactic bacteria, Appl. Environ. Microbiol. 82 (2016) 2219–2226.
[47] T.J. Yu, P.H. Li, T.W. Tseng, Y.C. Chen, Multifunctional Fe 3O 4/alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria, Nanomedicine. 6 (2011) 1353–1363.
[48] B. Chudzik, A. Miaskowski, Z. Surowiec, G. Czernel, T. Duluk, A. Marczuk, M. Gagoś, Effectiveness of magnetic fluid hyperthermia against Candida albicans cells, Int. J. Hyperth. 32 (2016) 842–857.
[49] S. Singh, K.C. Barick, D. Bahadur, Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4-ZnO nanocomposite, Powder Technol. 269 (2015) 513–519.
[50] V. Grazú, A.M. Silber, M. Moros, L. Asín, T.E. Torres, C. Marquina, M.R. Ibarra, G.F. Goya, Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections, Int. J. Nanomedicine. 7 (2012) 5351–5360.
[51] S.L. Berry, K. Walker, C. Hoskins, N.D. Telling, H.P. Price, Nanoparticle-mediated magnetic hyperthermia is an effective method for killing the human-infective protozoan parasite Leishmania mexicana in vitro, Sci. Rep. 9 (2019) 1–9.
[52] A.F.R. Rodriguez, C.C. dos Santos, K. Lüdtke-Buzug, A.C. Bakenecker, Y.O. Chaves, L.A.M. Mariúba, J. V. Brandt, B.E. Amantea, R.C. de Santana, R.F.C. Marques, M. Jafelicci, M.A. Morales, Evaluation of antiplasmodial activity and cytotoxicity assays of amino acids functionalized magnetite nanoparticles: Hyperthermia and flow cytometry applications, Mater. Sci. Eng. C. 125 (2021).
[53] J. Mosayebi, M. Kiyasatfar, S. Laurent, Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications, 2017.
[54] H.W. Cheng, H.Y. Tsao, C.S. Chiang, S.Y. Chen, Advances in Magnetic Nanoparticle-Mediated Cancer Immune-Theranostics, Adv. Healthc. Mater. 10 (2021) 1–20.
[55] Y. Liu, F. Cao, B. Sun, J.A. Bellanti, S.G. Zheng, Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis, J. Leukoc. Biol. 109 (2021) 415–424.
[56] J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: Synthesis modification and biomedical applications, Acc. Chem. Res. 42 (2009) 1097–1107.
[57] M.J. Gorbet, A. Singh, C. Mao, S. Fiering, A. Ranjan, Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits, Int. J. Hyperth. 37 (2020) 18–33.
[58] L. Rao, S.K. Zhao, C. Wen, R. Tian, L. Lin, B. Cai, Y. Sun, F. Kang, Z. Yang, L. He, J. Mu, Q.F. Meng, G. Yao, N. Xie, X. Chen, Activating Macrophage-Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles, Adv. Mater. 32 (2020) 1–9.
[59] Q. Jiang, K. Wang, X. Zhang, B. Ouyang, H. Liu, Z. Pang, W. Yang, Platelet Membrane-Camouflaged Magnetic Nanoparticles for Ferroptosis-Enhanced Cancer Immunotherapy, Small. 16 (2020) 1–17.
[60] A.I. Bocanegra Gondan, A. Ruiz-de-Angulo, A. Zabaleta, N. Gómez Blanco, B.M. Cobaleda-Siles, M.J. García-Granda, D. Padro, J. Llop, B. Arnaiz, M. Gato, D. Escors, J.C. Mareque-Rivas, Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles, Biomaterials. 170 (2018) 95–115.
[61] T.S.C. Ng, V. Gunda, R. Li, M. Prytyskach, Y. Iwamoto, R.H. Kohler, S. Parangi, R. Weissleder, M.A. Miller, Detecting immune response to therapies targeting PDL1 and BRAF by using ferumoxytol MRI and macrin in anaplastic thyroid cancer, Radiology. 298 (2020) 123–132.
[62] C.S. Chiang, Y.J. Lin, R. Lee, Y.H. Lai, H.W. Cheng, C.H. Hsieh, W.C. Shyu, S.Y. Chen, Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy, Nat. Nanotechnol. 13 (2018) 746–754.
[63] A.J. Grippin, B. Wummer, T. Wildes, K. Dyson, V. Trivedi, C. Yang, M. Sebastian, H.R. Mendez-Gomez, S. Padala, M. Grubb, M. Fillingim, A. Monsalve, E.J. Sayour, J. Dobson, D.A. Mitchell, Dendritic Cell-Activating Magnetic Nanoparticles Enable Early Prediction of Antitumor Response with Magnetic Resonance Imaging, ACS Nano. 13 (2019) 13884–13898.
[64] B. Yu, B. Choi, W. Li, D.H. Kim, Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy, Nat. Commun. 11 (2020).
[65] H. Lei, Y. Pan, R. Wu, Y. Lv, Innate Immune Regulation Under Magnetic Fields With Possible Mechanisms and Therapeutic Applications, Front. Immunol. 11 (2020) 1–10.
[66] K. Abdul, A.H.L. Abbas, P. Shiv, Cellular and Molecular Immunology, 8th ed., Saunders Elsevier, Philadelphia, PA, USA, 2015
[67] M. Ilves, J. Palomäki, M. Vippola, M. Lehto, K. Savolainen, T. Savinko, H. Alenius, Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model, Part. Fibre Toxicol. 11 (2014) 1–12.
[68] H.C. Chuang, T.C. Hsiao, C.K. Wu, H.H. Chang, C.H. Lee, C.C. Chang, T.J. Cheng, Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models, Int. J. Nanomedicine. 8 (2013) 4495–4506.
[69] T. Hirai, Y. Yoshioka, H. Takahashi, K. Ichihashi, T. Yoshida, S. Tochigi, K. Nagano, Y. Abe, H. Kamada, S. Tsunoda, H. Nabeshi, T. Yoshikawa, Y. Tsutsumi, Amorphous silica nanoparticles enhance cross-presentation in murine dendritic cells, Biochem. Biophys. Res. Commun. 427 (2012) 553–556.
[70] S. Hussain, J.A.J. Vanoirbeek, K. Luyts, V. De Vooght, E. Verbeken, L.C.J. Thomassen, J.A. Martens, D. Dinsdale, S. Boland, F. Marano, B. Nemery, P.H.M. Hoet, Lung exposure to nanoparticles modulates an asthmatic response in a mouse model, Eur. Respir. J. 37 (2011) 299–309.
[71] M. Lu, M.H. Cohen, D. Rieves, R. Pazdur, FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease, Am. J. Hematol. 85 (2010) 315–319.
[72] Y.-X.J. Wang, Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application., Quant. Imaging Med. Surg. 1 (2011) 35–40.
[73] T. Fülöp, R. Nemes, T. Mészáros, R. Urbanics, R.J. Kok, J.A. Jackman, N. Cho, G. Storm, J. Szebeni, Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model: Correlation with physicochemical features and clinical information, J. Control. Release. 270 (2018) 268–274.
[74] N.B. Alsaleh, J.M. Brown, Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions, Front. Immunol. 11 (2020) 1–14.
[75] F. Blank, P. Gerber, B. Rothen-Rutishauser, U. Sakulkhu, J. Salaklang, K. De Peyer, P. Gehr, L.P. Nicod, H. Hofmann, T. Geiser, A. Petri-Fink, C. Von Garnier, Biomedical nanoparticles modulate specific CD4 + T cell stimulation by inhibition of antigen processing in dendritic cells, Nanotoxicology. 5 (2011) 606–621.
[76] L. Johnson, A. Duschl, M. Himly, Nanotechnology-based vaccines for allergen-specific immunotherapy: Potentials and challenges of conventional and novel adjuvants under research, Vaccines. 8 (2020).
[77] B. Teste, F. Malloggi, J.M. Siaugue, A. Varenne, F. Kanoufi, S. Descroix, Microchip integrating magnetic nanoparticles for allergy diagnosis, Lab Chip. 11 (2011) 4207–4213.
[78] X. Han, M. Cao, B. Zhou, C. Yu, Y. Liu, B. Peng, L. Meng, J.F. Wei, L. Li, W. Huang, Specifically immobilizing His-tagged allergens to magnetic nanoparticles for fast and quantitative detection of allergen-specific IgE in serum samples, Talanta. 219 (2020) 121301.
[79] M. Cao, Y. Liu, C. Lu, M. Guo, L. Li, C. Yu, J.F. Wei, Ultrasensitive detection of specific IgE based on nanomagnetic capture and separation with a AuNP-anti-IgE nanobioprobe for signal amplification, Anal. Methods. 13 (2021) 2478–2484.
[80] S. Ashraf, S. Qadri, B. Al-Ramadi, Y. Haik, Nanoparticles rapidly assess specific IgE in plasma, Nanotechnology. 23 (2012).
[81] Y.K. Hahn, Z. Jin, J.H. Kang, E. Oh, M.K. Han, H.S. Kim, J.T. Jang, J.H. Lee, J. Cheon, S.H. Kim, H.S. Park, J.K. Park, Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient, Anal. Chem. 79 (2007) 2214–2220.
[82] L. Wu, S. Shen, What potential do magnetic iron oxide nanoparticles have for the treatment of rheumatoid arthritis?, Nanomedicine. 14 (2019) 927–930.
[83] A.A. Yetisgin, S. Cetinel, M. Zuvin, A. Kosar, O. Kutlu, Therapeutic Nanoparticles and Their Targeted Delivery Applications, Molecules. 25 (2020) 1–31.
[84] X. Clemente-Casares, P. Santamaria, Nanomedicine in autoimmunity, Immunol. Lett. 158 (2014) 167–174.
[85] J.M. Thurman, N.J. Serkova, Nanosized Contrast Agents to Noninvasively Detect Kidney Inflammation by Magnetic Resonance Imaging, Adv. Chronic Kidney Dis. 20 (2013) 488–499.
[86] M.S. Dukhinova, A.Y. Prilepskii, V. V. Vinogradov, A.A. Shtil, Metal oxide nanoparticles in therapeutic regulation of macrophage functions, Nanomaterials. 9 (2019) 1–20.
[87] Y.H. Luo, L.W. Chang, P. Lin, Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications, Biomed Res. Int. 2015 (2015).
[88] K. Koushki, S.K. Shahbaz, M. Keshavarz, E.E. Bezsonov, T. Sathyapalan, A. Sahebkar, Gold nanoparticles: Multifaceted roles in the management of autoimmune disorders, 2021.
[89] H. Ying, Y. Ruan, Z. Zeng, Y. Bai, J. Xu, S. Chen, Iron oxide nanoparticles size-dependently activate mouse primary macrophages via oxidative stress and endoplasmic reticulum stress, Int. Immunopharmacol. 105 (2022) 108533.
[90] A.H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chemie – Int. Ed. 46 (2007) 1222–1244.
[91] D. Reichel, M. Tripathi, J.M. Perez, Biological effects of nanoparticles on macrophage polarization in the tumor microenvironment, Nanotheranostics. 3 (2019) 66–88.
[92] V. Mulens-Arias, J.M. Rojas, D.F. Barber, The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment, Front. Immunol. 12 (2021).
[93] L. Liu, R. Sha, L. Yang, X. Zhao, Y. Zhu, J. Gao, Y. Zhang, L.P. Wen, Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages, ACS Appl. Mater. Interfaces. 10 (2018) 41197–41206.
[94] Y. Zhang, Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications, Cell. Mol. Immunol. 17 (2020) 807–821.
[95] C.S. Nascimento, É.A.R. Alves, C.P. De Melo, R. Corrêa-Oliveira, C.E. Calzavara-Silva, Immunotherapy for cancer: Effects of iron oxide nanoparticles on polarization of tumor-associated macrophages, Nanomedicine. 16 (2021) 2633–2650.