Magnetic Nanoparticles for Drug Delivery Applications

$30.00

Magnetic Nanoparticles for Drug Delivery Applications

Ayushi G. Patel, Rajshree B. Jotania, Martin F. Desimone

Magnetic nanoparticles (MNPs) possess different structural, magnetic and dielectric properties compared to bulk magnetic particles and they have found potential applications in the biomedical field (due to their response to applied magnetic field) including MRI, targeted drug delivery, bio sensors, tissue engineering, cancer therapy, and diagnosis, biomaterial coating devices, hyperthermia, cell selection and separation, magnetorelaximetry, antibacterial agent, biomolecules extraction, immunoassay, lab-on-a-chip etc. The synthesis of MNPs can be done by various methods pertaining to the application one is interested in. In present chapter we discuss basic properties (surface and magnetic) of magnetic nano particles and their biomedical applications.

Keywords
Magnetic Nano Particles, Spinel Ferrites, Surface Morphology, Magnetic Properties, Biomedical Applications

Published online , 20 pages

Citation: Ayushi G. Patel, Rajshree B. Jotania, Martin F. Desimone, Magnetic Nanoparticles for Drug Delivery Applications, Materials Research Foundations, Vol. 143, pp 233-252, 2023

DOI: https://doi.org/10.21741/9781644902332-8

Part of the book on Magnetic Nanoparticles for Biomedical Applications

References
[1] V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros-Mendez, Advances in Magnetic Nanoparticles for Biomedical Applications, Adv. Healthc. Mater. 7 (2018) 1700845. https://doi.org/10.1002/adhm.201700845
[2] M.I. Anik, M.K. Hossain, I. Hossain, A.M.U.B. Mahfuz, M.T. Rahman, I. Ahmed, Recent progress of magnetic nanoparticles in biomedical applications: A review, Nano Sel. 2 (2021) 1146–1186. https://doi.org/10.1002/nano.202000162
[3] N. Tran, T.J. Webster, Magnetic nanoparticles: biomedical applications and challenges, J. Mater. Chem. 20 (2010) 8760. https://doi.org/10.1039/c0jm00994f
[4] C. Xu, S. Sun, Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications, Dalt. Trans. (2009) 5583. https://doi.org/10.1039/b900272n
[5] C. Xu, S. Sun, New forms of superparamagnetic nanoparticles for biomedical applications, Adv. Drug Deliv. Rev. 65 (2013) 732–743. https://doi.org/10.1016/j.addr.2012.10.008
[6] W. Cai, Engineering in Translational Medicine, Springer London, London, 2014. https://doi.org/10.1007/978-1-4471-4372-7
[7] Z. Sharafi, B. Bakhshi, J. Javidi, S. Adrangi, Synthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation without Using Additives or Seed Pretreatment., Iran. J. Pharm. Res. IJPR. 17 (2018) 386–395. http://www.ncbi.nlm.nih.gov/pubmed/29755569
[8] R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles, Adv. Mater. 22 (2010) 2729–2742. https://doi.org/10.1002/adma.201000260
[9] Y. Jun, J. Choi, J. Cheon, Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes, Angew. Chemie Int. Ed. 45 (2006) 3414–3439. https://doi.org/10.1002/anie.200503821
[10] Y. Jun, J. Lee, J. Cheon, Chemical Design of Nanoparticle Probes for High‐Performance Magnetic Resonance Imaging, Angew. Chemie Int. Ed. 47 (2008) 5122–5135. https://doi.org/10.1002/anie.200701674
[11] R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Selective Inductive Heating of Lymph Nodes, Ann. Surg. 146 (1957) 596–606. https://doi.org/10.1097/00000658-195710000-00007
[12] H. Pardoe, W. Chua-anusorn, T.G. St. Pierre, J. Dobson, Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol, J. Magn. Magn. Mater. 225 (2001) 41–46. https://doi.org/10.1016/S0304-8853(00)01226-9
[13] A.A. Novakova, V.Y. Lanchinskaya, A.V. Volkov, T.S. Gendler, T.Y. Kiseleva, M.A. Moskvina, S.B. Zezin, Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles, J. Magn. Magn. Mater. 258–259 (2003) 354–357. https://doi.org/10.1016/S0304-8853(02)01062-4
[14] A. Petri-Fink, B. Steitz, A. Finka, J. Salaklang, H. Hofmann, Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): Colloidal stability, cytotoxicity, and cellular uptake studies, Eur. J. Pharm. Biopharm. 68 (2008) 129–137. https://doi.org/10.1016/j.ejpb.2007.02.024
[15] L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. 100 (2003) 13549–13554. https://doi.org/10.1073/pnas.2232479100
[16] M. Li, M.J. Mondrinos, X. Chen, M.R. Gandhi, F.K. Ko, P.I. Lelkes, Elastin Blends for Tissue Engineering Scaffolds, J. Biomed. Mater. Res. Part A. 79 (2006) 963–73. https://doi.org/10.1002/jbm.a
[17] B.A. Moffat, G.R. Reddy, P. McConville, D.E. Hall, T.L. Chenevert, R.R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, B.D. Ross, A Novel Polyacrylamide Magnetic Nanoparticle Contrast Agent for Molecular Imaging using MRI, Mol. Imaging. 2 (2003) 324–332. https://doi.org/10.1162/153535003322750664
[18] A. Moore, E. Marecos, A. Bogdanov, R. Weissleder, Tumoral Distribution of Long-circulating Dextran-coated Iron Oxide Nanoparticles in a Rodent Model, Radiology. 214 (2000) 568–574. https://doi.org/10.1148/radiology.214.2.r00fe19568
[19] A.S. Arbab, L.A. Bashaw, B.R. Miller, E.K. Jordan, B.K. Lewis, H. Kalish, J.A. Frank, Characterization of Biophysical and Metabolic Properties of Cells Labeled with Superparamagnetic Iron Oxide Nanoparticles and Transfection Agent for Cellular MR Imaging, Radiology. 229 (2003) 838–846. https://doi.org/10.1148/radiol.2293021215
[20] C.C. Berry, S. Wells, S. Charles, A.S.G. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro, Biomaterials. 24 (2003) 4551–4557. https://doi.org/10.1016/S0142-9612(03)00237-0
[21] J. Gao, H. Gu, B. Xu, Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications, Acc. Chem. Res. 42 (2009) 1097–1107. https://doi.org/10.1021/ar9000026
[22] A.G. Niculescu, C. Chircov, A.M. Grumezescu, Magnetite nanoparticles: Synthesis methods – A comparative review, Methods. 199 (2022) 16–27. https://doi.org/10.1016/j.ymeth.2021.04.018
[23] J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metall. Trans. 1 (1970) 2943–2951. https://doi.org/10.1007/BF03037835
[24] A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y.K. Rui, Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications, Front. Chem. 9 (2021) 1–25. https://doi.org/10.3389/fchem.2021.629054
[25] S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles, Adv. Colloid Interface Sci. 281 (2020) 102165. https://doi.org/10.1016/j.cis.2020.102165
[26] L.M. AL-Harbi, M.S.A. Darwish, Functionalized iron oxide nanoparticles: synthesis through ultrasonic-assisted co-precipitation and performance as hyperthermic agents for biomedical applications, Heliyon. 8 (2022) e09654. https://doi.org/10.1016/j.heliyon.2022.e09654
[27] H. Mohammadi, E. Nekobahr, J. Akhtari, M. Saeedi, J. Akbari, F. Fathi, Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity, Toxicol. Reports. 8 (2021) 331–336. https://doi.org/10.1016/j.toxrep.2021.01.012
[28] A. Bahadur, A. Saeed, M. Shoaib, S. Iqbal, M.I. Bashir, M. Waqas, M.N. Hussain, N. Abbas, Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: Dielectric, magnetic, thermal and optical studies, Mater. Chem. Phys. 198 (2017) 229–235. https://doi.org/10.1016/j.matchemphys.2017.05.061
[29] B.W. Chen, Y.C. He, S.Y. Sung, T.T.H. Le, C.L. Hsieh, J.Y. Chen, Z.H. Wei, D.J. Yao, Synthesis and characterization of magnetic nanoparticles coated with polystyrene sulfonic acid for biomedical applications, Sci. Technol. Adv. Mater. 21 (2020) 471–481. https://doi.org/10.1080/14686996.2020.1790032
[30] M. Jafari Eskandari, I. Hasanzadeh, Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 266 (2021) 115050. https://doi.org/10.1016/j.mseb.2021.115050
[31] P. Tartaj, M. Del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D. Appl. Phys. 36 (2003). https://doi.org/10.1088/0022-3727/36/13/202
[32] I. Danielsson, B. Lindman, The definition of microemulsion, Colloids and Surfaces. 3 (1981) 391–392. https://doi.org/10.1016/0166-6622(81)80064-9
[33] M.J. Lawrence, G.D. Rees, Microemulsion-based media as novel drug delivery systems, Adv. Drug Deliv. Rev. 64 (2012) 175–193. https://doi.org/10.1016/j.addr.2012.09.018
[34] P.A. Trzaskowska, A. Poniatowska, K. Tokarska, C. Wiśniewski, T. Ciach, E. Malinowska, Promising electrodeposited biocompatible coatings for steel obtained from polymerized microemulsions, Colloids Surfaces A Physicochem. Eng. Asp. 591 (2020) 124555. https://doi.org/10.1016/j.colsurfa.2020.124555
[35] X. Liu, L. Xu, X. Liu, Y. Wang, Y. Zhao, Q. Kang, J. Liu, H. Lan, L. Yu, Q. Wu, Combination of essential oil from Zanthoxylum bungeanum Maxim. and a microemulsion system: Permeation enhancement effect on drugs with different lipophilicity and its mechanism, J. Drug Deliv. Sci. Technol. 55 (2020) 101309. https://doi.org/10.1016/j.jddst.2019.101309
[36] M.A. Momoh, K.C. Franklin, C.P. Agbo, C.E. Ugwu, M.O. Adedokun, O.C. Anthony, O.E. Chidozie, A.N. Okorie, Microemulsion-based approach for oral delivery of insulin: formulation design and characterization, Heliyon. 6 (2020) e03650. https://doi.org/10.1016/j.heliyon.2020.e03650
[37] V. Collins Arun Prakash, I. Venda, V. Thamizharasi, Synthesis and characterization of surfactant assisted hydroxyapatite powder using microemulsion method, Mater. Today Proc. 51 (2021) 1788–1792. https://doi.org/10.1016/j.matpr.2021.05.059
[38] M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications, J. Iran. Chem. Soc. 7 (2010) 1–37. https://doi.org/10.1007/BF03245856
[39] P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, C.A. Ávila-Orta, J. Sánchez, M. Andrade-Guel, A. Herrera-Guerrero, C. Cabello-Alvarado, V.H. Ramos-Martínez, Synthesis of Pluronic F127-coated magnesium/calcium (Mg1-xCaxFe2O4) magnetic nanoparticles for biomedical applications, J. Magn. Magn. Mater. 521 (2021). https://doi.org/10.1016/j.jmmm.2020.167518
[40] S. Bhullar, N. Goyal, S. Gupta, A recipe for optimizing TiO2 nanoparticles for drug delivery applications, OpenNano. 8 (2022) 100096. https://doi.org/10.1016/j.onano.2022.100096
[41] P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Deliv. Sci. Technol. 53 (2019) 101174. https://doi.org/10.1016/j.jddst.2019.101174
[42] A. V. Samrot, C.S. Sahithya, J. Selvarani A, S.K. Purayil, P. Ponnaiah, A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles, Curr. Res. Green Sustain. Chem. 4 (2021) 100042. https://doi.org/10.1016/j.crgsc.2020.100042
[43] W. Gawęda, M. Pruszyński, E. Cędrowska, M. Rodak, A. Majkowska-Pilip, D. Gaweł, F. Bruchertseifer, A. Morgenstern, A. Bilewicz, Trastuzumab Modified Barium Ferrite Magnetic Nanoparticles Labeled with Radium-223: A New Potential Radiobioconjugate for Alpha Radioimmunotherapy, Nanomaterials. 10 (2020) 2067. https://doi.org/10.3390/nano10102067
[44] Y.C. López, M. Antuch, Morphology control in the plant-mediated synthesis of magnetite nanoparticles, Curr. Opin. Green Sustain. Chem. 24 (2020) 32–37. https://doi.org/10.1016/j.cogsc.2020.02.001
[45] M. Masuku, L. Ouma, A. Pholosi, Microwave assisted synthesis of oleic acid modified magnetite nanoparticles for benzene adsorption, Environ. Nanotechnology, Monit. Manag. 15 (2021) 100429. https://doi.org/10.1016/j.enmm.2021.100429
[46] Z. Shaoqiang, T. Dong, Z. Geng, H. Lin, Z. Hua, H. Jun, L. Yi, L. Minxia, H. Yaohua, Z. Wei, The influence of grain size on the magnetic properties of Fe3O4 nanocrystals synthesized by solvothermal method, J. Sol-Gel Sci. Technol. 98 (2021) 422–429. https://doi.org/10.1007/s10971-018-4909-2
[47] S. Cabana, A. Curcio, A. Michel, C. Wilhelm, A. Abou-Hassan, Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers, Nanomaterials. 10 (2020) 1548. https://doi.org/10.3390/nano10081548
[48] J.F. Mir, S. Rubab, M. Shah, Photo-electrochemical ability of iron oxide nanoflowers fabricated via electrochemical anodization, Chem. Phys. Lett. 741 (2020) 137088. https://doi.org/10.1016/j.cplett.2020.137088
[49] L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology. 30 (2017) 1–14. https://doi.org/10.1016/j.partic.2016.06.001
[50] P.M. Price, W.E. Mahmoud, A.A. Al-Ghamdi, L.M. Bronstein, Magnetic Drug Delivery: Where the Field Is Going, Front. Chem. 6 (2018). https://doi.org/10.3389/fchem.2018.00619
[51] I. Venugopal, N. Habib, A. Linninger, Intrathecal magnetic drug targeting for localized delivery of therapeutics in the CNS, Nanomedicine. 12 (2017) 865–877. https://doi.org/10.2217/nnm-2016-0418
[52] S. Jafari, L.O. Mair, I.N. Weinberg, J. Baker-McKee, O. Hale, J. Watson-Daniels, B. English, P.Y. Stepanov, C. Ropp, O.F. Atoyebi, D. Sun, Magnetic drilling enhances intra-nasal transport of particles into rodent brain, J. Magn. Magn. Mater. 469 (2019) 302–305. https://doi.org/https://doi.org/10.1016/j.jmmm.2018.08.048
[53] A. Nacev, I.N. Weinberg, P.Y. Stepanov, S. Kupfer, L.O. Mair, M.G. Urdaneta, M. Shimoji, S.T. Fricke, B. Shapiro, Dynamic Inversion Enables External Magnets To Concentrate Ferromagnetic Rods to a Central Target, Nano Lett. 15 (2015) 359–364. https://doi.org/10.1021/nl503654t
[54] L.B. Thomsen, T. Linemann, K.M. Pondman, J. Lichota, K.S. Kim, R.J. Pieters, G.M. Visser, T. Moos, Uptake and Transport of Superparamagnetic Iron Oxide Nanoparticles through Human Brain Capillary Endothelial Cells, ACS Chem. Neurosci. 4 (2013) 1352–1360. https://doi.org/10.1021/cn400093z
[55] M.L. Formica, D.A. Real, M.L. Picchio, E. Catlin, R.F. Donnelly, A.J. Paredes, On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles, Appl. Mater. Today. 29 (2022) 101631. https://doi.org/https://doi.org/10.1016/j.apmt.2022.101631
[56] M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery, Nano Today. 2 (2007) 22–32. https://doi.org/10.1016/S1748-0132(07)70084-1
[57] M.V. Tuttolomondo, M.E. Villanueva, G.S. Alvarez, M.F. Desimone, L.E. Díaz, Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: Properties and application for enzyme immobilization, Biotechnol. Lett. 35 (2013). https://doi.org/10.1007/s10529-013-1259-6
[58] K. Ulbrich, K. Holá, V. Šubr, A. Bakandritsos, J. Tuček, R. Zbořil, Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies, Chem. Rev. 116 (2016) 5338–5431. https://doi.org/10.1021/acs.chemrev.5b00589
[59] A. Mittal, I. Roy, S. Gandhi, Magnetic Nanoparticles: An Overview for Biomedical Applications, Magnetochemistry. 8 (2022). https://doi.org/10.3390/magnetochemistry8090107
[60] P. Chen, B. Cui, Y. Bu, Z. Yang, Y. Wang, Synthesis and characterization of mesoporous and hollow-mesoporous MxFe3-xO4 (M=Mg, Mn, Fe, Co, Ni, Cu, Zn) microspheres for microwave-triggered controllable drug delivery, J. Nanoparticle Res. 19 (2017) 398. https://doi.org/10.1007/s11051-017-4096-z
[61] K.R. Hande, Etoposide: four decades of development of a topoisomerase II inhibitor, Eur. J. Cancer. 34 (1998) 1514–1521. https://doi.org/10.1016/S0959-8049(98)00228-7
[62] P. Chen, B. Cui, X. Cui, W. Zhao, Y. Bu, Y. Wang, A microwave-triggered controllable drug delivery system based on hollow-mesoporous cobalt ferrite magnetic nanoparticles, J. Alloys Compd. 699 (2017) 526–533. https://doi.org/https://doi.org/10.1016/j.jallcom.2016.12.304
[63] G. Wang, D. Zhao, N. Li, X. Wang, Y. Ma, Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery, J. Magn. Magn. Mater. 456 (2018) 316–323. https://doi.org/https://doi.org/10.1016/j.jmmm.2018.02.053
[64] D.N. Price, L.R. Stromberg, N.K. Kunda, P. Muttil, In Vivo Pulmonary Delivery and Magnetic-Targeting of Dry Powder Nano-in-Microparticles, Mol. Pharm. 14 (2017) 4741–4750. https://doi.org/10.1021/acs.molpharmaceut.7b00532
[65] Y. Wang, G. Wei, X. Zhang, X. Huang, J. Zhao, X. Guo, S. Zhou, Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy, Small. 14 (2018) 1702994. https://doi.org/https://doi.org/10.1002/smll.201702994
[66] M.-L. Chen, Y.-J. He, X.-W. Chen, J.-H. Wang, Quantum Dots Conjugated with Fe3O4-Filled Carbon Nanotubes for Cancer-Targeted Imaging and Magnetically Guided Drug Delivery, Langmuir. 28 (2012) 16469–16476. https://doi.org/10.1021/la303957y
[67] W.-H. Chiang, V.T. Ho, H.-H. Chen, W.-C. Huang, Y.-F. Huang, S.-C. Lin, C.-S. Chern, H.-C. Chiu, Superparamagnetic Hollow Hybrid Nanogels as a Potential Guidable Vehicle System of Stimuli-Mediated MR Imaging and Multiple Cancer Therapeutics, Langmuir. 29 (2013) 6434–6443. https://doi.org/10.1021/la4001957
[68] M.W. Mushtaq, F. Kanwal, A. Batool, T. Jamil, M. Zia-ul-Haq, B. Ijaz, Q. Huang, Z. Ullah, Polymer-coated CoFe2O4 nanoassemblies as biocompatible magnetic nanocarriers for anticancer drug delivery, J. Mater. Sci. 52 (2017) 9282–9293. https://doi.org/10.1007/s10853-017-1141-3
[69] X. Wang, Y. Qi, Z. Hu, L. Jiang, F. Pan, Z. Xiang, Z. Xiong, W. Jia, J. Hu, W. Lu, Fe3O4@PVP@DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers, Adv. Compos. Hybrid Mater. 5 (2022) 1786–1798. https://doi.org/10.1007/s42114-022-00433-2
[70] M. Ebadi, S. Bullo, K. Buskaran, M.Z. Hussein, S. Fakurazi, G. Pastorin, Dual-Functional Iron Oxide Nanoparticles Coated with Polyvinyl Alcohol/5-Fluorouracil/Zinc-Aluminium-Layered Double Hydroxide for a Simultaneous Drug and Target Delivery System, Polymers (Basel). 13 (2021). https://doi.org/10.3390/polym13060855
[71] M. Ebadi, K. Buskaran, B. Saifullah, S. Fakurazi, M.Z. Hussein, The Impact of Magnesium–Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent, Int. J. Mol. Sci. 20 (2019). https://doi.org/10.3390/ijms20153764
[72] M. Ebadi, B. Saifullah, K. Buskaran, M. Hussein, S. Fakurazi, Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide, Int J Nanomedicine. 14 (2019) 6661–6678. https://doi.org/https://doi.org/10.2147/IJN.S214923
[73] H.-A.-A. SH, H. MZ, B. S, A. P., Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells, Int J Nanomedicine. 16 (2021) 6205–6216. https://doi.org/doi:10.2147/IJN.S312752
[74] A. Marcu, S. Pop, F. Dumitrache, M. Mocanu, C.M. Niculite, M. Gherghiceanu, C.P. Lungu, C. Fleaca, R. Ianchis, A. Barbut, C. Grigoriu, I. Morjan, Magnetic iron oxide nanoparticles as drug delivery system in breast cancer, Appl. Surf. Sci. 281 (2013) 60–65. https://doi.org/https://doi.org/10.1016/j.apsusc.2013.02.072
[75] K. Dobretsov, S. Stolyar, A. Lopatin, Magnetic nanoparticles: a new tool for antibiotic delivery to sinonasal tissues. Results of preliminary studies, Acta Otorhinolaryngol. Ital. 35 (2015) 97–102
[76] X. Wang, A. Deng, W. Cao, Q. Li, L. Wang, J. Zhou, B. Hu, X. Xing, Synthesis of chitosan/poly (ethylene glycol)-modified magnetic nanoparticles for antibiotic delivery and their enhanced anti-biofilm activity in the presence of magnetic field, J. Mater. Sci. 53 (2018) 6433–6449. https://doi.org/10.1007/s10853-018-1998-9
[77] M. Chorny, E. Hood, R.J. Levy, V.R. Muzykantov, Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles, J. Control. Release. 146 (2010) 144–151. https://doi.org/10.1016/j.jconrel.2010.05.003
[78] H. Aryan, B. Beigzadeh, M. Siavashi, Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation, Comput. Methods Programs Biomed. 219 (2022) 106778. https://doi.org/https://doi.org/10.1016/j.cmpb.2022.106778
[79] R.P. Friedrich, I. Cicha, C. Alexiou, Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering, Nanomaterials. 11 (2021). https://doi.org/10.3390/nano11092337
[80] M. Marcus, A. Smith, A. Maswadeh, Z. Shemesh, I. Zak, M. Motiei, H. Schori, S. Margel, A. Sharoni, O. Shefi, Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles, Nanomaterials. 8 (2018). https://doi.org/10.3390/nano8090707
[81] E. Daher Pereira, S. Thomas, F. Gomes de Souza Junior, J. da Silva Cardoso, S. Thode Filho, V. Corrêa da Costa, F. da Silveira Maranhão, N. Ricardo Barbosa de Lima, F. Veloso de Carvalho, M. Galal Aboelkheir, Study of controlled release of ibuprofen magnetic nanocomposites, J. Mol. Struct. 1232 (2021) 130067. https://doi.org/https://doi.org/10.1016/j.molstruc.2021.130067
[82] D. Dorniani, M.Z. Bin Hussein, A.U. Kura, S. Fakurazi, A.H. Shaari, Z. Ahmad, Sustained release of prindopril erbumine from its chitosan-coated magnetic nanoparticles for biomedical applications, Int. J. Mol. Sci. 14 (2013) 23639–23653. https://doi.org/10.3390/ijms141223639
[83] R. Amato, M. Giannaccini, M. Dal Monte, M. Cammalleri, A. Pini, V. Raffa, M. Lulli, G. Casini, Association of the Somatostatin Analog Octreotide With Magnetic Nanoparticles for Intraocular Delivery: A Possible Approach for the Treatment of
[84] C. C. Chauhan, T. Gupta, S. S. Meena, M. F. Desimone, A. Das, C. Singh Sandhu, K. R. Jotania, R. B. Jotania, Tailoring magnetic and dielectric properties of SrFe12O19/NiFe2O4 ferrite nanocomposites synthesized in presence of Calotropis gigantea (crown) flower extract. J. Alloys Comp, 900, 163415, 2022.https://doi.org/10.1016/j.jallcom.2021.163415
[85] C. C.Chauhan, A. A.Gor, T. Gupta, M. F. Desimone, N. Patni, R. B. Jotania. Investigation on structural, optical, magnetic, and dielectric properties of calcium hexaferrite synthesized in presence of Azadirachta indica and Murraya koenigii leaves extract. Ceramics Int., 48, 14, 20134-20145, 2022. https://doi.org/10.1016/j.ceramint.2022.03.292