Magnetic Nanoparticles: Fabrications and Applications in Cancer Therapy and Diagnosis


Magnetic Nanoparticles: Fabrications and Applications in Cancer Therapy and Diagnosis

T.S. Shrirame, P. Bhilkar, A.R. Chaudhary, A.R. Rai, R.P. Singh, P.R. Dhongle, S.R. Thakare, A.A. Abdala and R.G. Chaudhary

Cancer is a global epidemic disease. Millions of people are affected by this disease every year. It affects humans including, children to old age. Nonetheless, there are several therapeutic treatments and drugs available to cure cancer. Recently, the use of smart nanoparticles (NPs) has been a promising technique to eradicate cancer. Among these NPs, magnetic NPs are efficient in treating cancer. Targeted drug-delivery based on ‘smart’ nanoparticles is the next step towards more efficient oncologic therapies, by delivering a minimal dose of drug only to the vicinity of the target. In the present chapter the methods used for fabrication and engineering of magnetic NPs is discussed. We have focused on current state of research on various applications of magnetic nanoparticles as well as recent breakthrough in the development of these NPs in cancer therapy, diagnosis, and targeted delivery.

Magnetic Nanoparticles, Metal/Metal Oxide Nanoparticles, Magnetic Resonance Imaging, Oncology, Cancer Therapy, Cancer Diagnosis

Published online , 34 pages

Citation: T.S. Shrirame, P. Bhilkar, A.R. Chaudhary, A.R. Rai, R.P. Singh, P.R. Dhongle, S.R. Thakare, A.A. Abdala and R.G. Chaudhary, Magnetic Nanoparticles: Fabrications and Applications in Cancer Therapy and Diagnosis, Materials Research Foundations, Vol. 143, pp 199-232, 2023


Part of the book on Magnetic Nanoparticles for Biomedical Applications

[1] Igor Pantic, Magnetic nanoparticles in cancer diagnosis and treatment : Novel approaches, Reviews on Advance Materials Science, 26 (2010) 67-73.
[2] S. Parvanian, S. Mojtaba, and M. Aghashiri, Multifunctional nanoparticle developments in cancer diagnosis and treatment, Sensing and Bio-Sensing Research, 13 (2016) 81-87.
[3] G. Yeldag, A. Rice, and A. del Río Hernandez, Chemoresistance and the self-maintaining tumor microenvironment, Cancers, 10 (2018) 471.
[4] F. Cheng, C. Chan, B. Wang, Y. Yeh, and Y. Wang, The oxygen-generating calcium peroxide-modified magnetic nanoparticles attenuate hypoxia-induced chemoresistance in triple-negative breast cancer, Cancers, 13 (2021) 606.
[5] L. M. Colli, M. J. Machiela, H. Zhang, T. A. Myers, Landscape of combination immunotherapy and targeted therapy to improve cancer management, Cancer Research. 77 (2017) 3666–3672.
[6] P. I. P. Soares, I. M. M. Ferreira, R. A. G. B. N. Igreja, C. M. M. Novo, and P. M. R. Borges, Application of hyperthermia for cancer treatment : recent patents review, Recent Patents on Anti-Cancer Drug Discovery, 7 (2012) 64–73.
[7] N. Hinge, M. M. Pandey, G. Singhvi, G. Gupta, M. Mehta, S. Satija, M. Gulati, H. Dureja and K. Dua, Nanomedicine advances in cancer therapy, In Advanced 3D – Printed System and Nanosystems for Drug Delivery and Tissue Engineering, (2018) 219-253.
[8] H. Zhang, X. Li Liu, Yi F. Zhang, F. Gao, G. L. Li, Y. He, M. Li Peng and H. M. Fan, Magnetic nanoparticles based cancer therapy : current status and, Science China Life Sciences, 61 (2018) 400-414.
[9] A. Farzin, S. A. Etesami, J. Quint, A. Memic, and A. Tamayol, Magnetic Nanoparticles in Cancer Therapy and Diagnosis, Advanced Healthcare Materials, 1901058: (2020) 1–29.
[10] S. Majidi, F. Z. Sehrig, S. M. Farkhani, and M. S. Goloujeh, Current methods for synthesis of magnetic nanoparticles, Artificial Cells, Nanomedicine, and Biotechnology, 44 (2014) 722-734.
[11] M. Kouhi, A. Vahedi, A. Akbarzadeh, Y. Hanifehpour, and S. W. Joo, Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot, Nanoscale Research Letters, 9 (2014) 131.
[12] H. R. Ghorbani, A. A. Safekordi, H. Attar, and S. M. R. Sorkhabadi, Biological and Non-biological Methods for Silver Nanoparticles Synthesis, Chemical and Biochemical Engineering Quarterly. 25 (2011) 317–326.
[13] K. S. Kavitha, `S. Baker, D. Rakshith, H. U. Kavitha, H. C. Rao, B. P. Harini and S. Satish, Plants as Green Source towards Synthesis of Nanoparticles Plants as Green Source towards Synthesis of Nanoparticles, International Research Journal of Biological Sciences, 2 (2013) 66-76.
[14] M. Bin Ahmad, M. Y. Tay, K. Shameli, M. Z. Hussein, and J. J. Lim, Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent, International Journal of Molecular Scienec, 12 (2011) 4872–4884.
[15] K. Parveen, V. Banse, and L. Ledwani, Green synthesis of nanoparticles : Their advantages and disadvantages, AIP Conference Proceeding, 1724 (2016) 20048.
[16] R. G. Chaudhary, A. Mondal, T. Aziz, and A. Potbhare, Applications of metal / metal oxides nanoparticles in organic transformations, Material Research Foundation, 83 (2020) 134-156.
[17] J. Kudr, Y. H. Id, L. Richtera, V. Adam, and O. Zitka, Magnetic nanoparticles : from design and synthesis to real world applications, Nanomaterials, 7 (2017) 243.
[18] M. Wu, and S. Huang, Magnetic nanoparticles in cancer diagnosis , drug delivery and treatment (Review), Molecular and Clinical Oncology, 7 (2017) 738–746.
[19] B. Issa, I. M. Obaidat, B. A. Albiss, and Y. Haik, Magnetic nanoparticles : surface effects and properties related to biomedicine applications, International Journal of Molecular Sciences, 14 (2013) 21266–21305.
[20] I. M. Obaidat, B. Issa and Y. Haik, Magnetic properties of magnetic nanoparticles for efficient hyperthermia, Nanomaterials, 5 (2015) 63–89.
[21] M. Javaid, A. Haleem, R. P. Singh, S. Rab, and R. Suman, Exploring the potential of nanosensors: A brief overvie, Sensors International, 2 (2021) 100130.
[22] M. Mahdavi, M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. Ab Rahman, and J. Amin, Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications, Molecules, 18 (2013) 7533–7548.
[23] S. S. Khiabani, M. Farshbaf, S. Davaran and A. Akbarzadeh, Magnetic nanoparticles : preparation methods, applications in cancer diagnosis and cancer therapy, Artificial Cells, Nanomedicine, and Biotechnology, 45 (2016) 6-17.
[24] S. Morup, M. F. Hansen, C. Frandsen, and K. Lyngby, Magnetic Nanoparticles, Department of Physics, Surface Physics and Catalysis, 1 (2011) 437-491.
[25] H. C. Orested, Experiments on the Effect of a current of electricity on the magnetic needle, Semantic Scholar, 16 (1820) 273-277.
[26] J. M. Eargle, Analog Magnetic Recording, Handbook of Recording Engineering, (1996) 223–224.
[27] J. Alonso, M. Barandiarán, L. F. Barquín and A. G. Arribas, Magnetic nanoparticles, synthesis, properties, and applications, Magnetic Nanostructured Materials, (2018) 1-40.
[28] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Petroff, Gaint Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Physical Review Letters, 61 (1998) 2472.
[29] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures antiferromagnetic interlayer exchange, Physical Review B, 39 (1989) 4828–4830.
[30] E. M. Materon, C. M. Miyazaki, O. Carr, N. Joshi, P. H. S. Picciani, C. J. Dalmaschio, F. Davis and F. M. Shimizu, Magnetic nanoparticles in biomedical applications : A review, Applied Surface Science Advances, 6 (2021) 100163.
[31] M. Attia, N. Anton, J. Wallyn, Z. Omran, and T. Vandamme, An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites, Journal of Pharmacy and Pharmacology, 71 (2019) 1185-1198.
[32] J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, Cancer nanomedicine : progress, challenges and opportunities, National Journal Publishers, 17 (2016) 20–37.
[33] R. Weissleder, Molecular Imaging in Cancer, Frontiers in Cancer Research, 312 (2016) 1168-1171.
[34] J. Kim, N. Lee, and N. Lee, Recent development of nanoparticles for molecular imaging, Philosophical Transactions of the Royal Society A Journal, 375 (2017) 20170022.
[35] T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. Bin Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process,” Journal of the American Chemical Society, 123 (2001) 12798–12801.
[36] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 287 (2000) 1989-1992.
[37] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, Shan X. Wang, and G. Li (2004), “Monodisperse MFe2O4 ( M = Fe , Co , Mn ) Nanoparticles, Journal of the American Chemical Society, 126 (2004) 273-279.
[38] A. Yadollahpour and S. Rashidi (2015), “Magnetic nanoparticles : A review of chemical and physical characteristics important in medical applications, Oriental Journal of Chemistry, 31 (2015).
[39] J. Gellermann, W. Wlodarczyk, A. Feussner, H. Fahlings, J. Nadobny, B. Hildebrandt, R. Felix and P. Wust, Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system, 21 (2005) 497-513.
[40] N. Senthilkumar, P. Kumar, N. Sood, and N. Bhalla, Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body, Coordination Chemistry Reviews, 445 (2021) 214082.
[41] K. Mcnamara and S. A. M. Tofail, Nanosystem: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applicatons, Physical Chemistry Chemical Physics, 17 (2015) 27981-27995.
[42] A. Figuerola, R. Di, L. Manna, and T. Pellegrino, From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications, Pharmacol, Res. 62 (2010) 126–143.
[43] D. Ho, X. Sun and S. Sun, Monodisperse Magnetic nanoparticles for theranostic applications, American Chemical Society, 44 (2011) 875-882.
[44] C. Caizer, Nanoparticle Size Effect on Some Magnetic Properties, Springer Cham, (2016) 475-519.
[45] C. P. Bean and J. D. Livingston, Superparamagnetism, Journal of Applied Physics, 30 (1959) 120-129.
[46] C. Rümenapp, B. Gleich, and A. Haase, Magnetic nanoparticles in magnetic resonance imaging and diagnostics, Pharmaceutical Research. 29 (2012) 1165-1179.
[47] S. Mirza, M. S. Ahmad, M. Ishaq, A. Shah, and M. Ateeq, Magnetic nanoparticles : drug delivery and bioimaging applications, In Metal nanoparticles for drug delivery and diagnostic applications, (2020) 189-208.
[48] Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics, 36 (2003) 167-181.
[49] Y. Koksharov and G. Khomutov, Organized ensembles of magnetic nanoparticles : preparation , structure , and properties, Magnetic Nanoparticles. 15 (2009) 117-95.
[50] R. P. Cowburn, Property variation with shape in magnetic nanoelements, Journal of Physics D: Applied Physics, 33 (2000) 1–16.
[51] L. Sun, C. Huang, T. Gong, and S. Zhou, A biocompatible approach to surface modification : Biodegradable polymer functionalized super-paramagnetic iron oxide nanoparticles, Materials Science and Engineering C, 30 (2010) 583–589.
[52] C. Ileana, C. Daniela, C. Matei, L. Diamandescu, and E. Vasile, Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications, Journal of Nanoparticle Research, 13 (2011) 6169–6180.
[53] Y. Liu, T. Chen, C. Wu, L. Qui, R. Hu, J. Li, S. Cansiz, L. Zhang, C. Cui, G. Zhu, M. You, T. Zhang and W. Tan, Facile surface functionalization of hydrophobic magnetic nanoparticles, Journal of the American Chemical Society, 136 (2014) 12552-12555.
[54] D. Ling, M. J. Hackett, and T. Hyeon, Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles, Nano Today, 9 (2014) 457-477.
[55] T. Kang, F. Li, S. Baik, W. Shao, and D. Ling, Biomaterials surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy, Biomaterials, 136 (2017) 98–114.
[56] G. Palui, F. Aldeek, W. Wang, and H. Mattoussi, Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating, Chemical Society Reviews, 44 (2015) 193-227.
[57] E. C. Gryparis, M. Hatziapostolou, and E. Papadimitriou, Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells, European Journal of Pharmaceutics and Biopharmaceutics, 67 (2007) 1–8.
[58] P. M. De Molina, M. Zhang, A. V. Bayles, and M. E. Helgeson, Oil-in-water-in-oil multi-nanoemulsions for templating complex nanoparticles, Nano Letters, 16 (2016) 7325-7332.
[59] S. Natarajan, K. Harini, G. P. Gajula, B. Sarmento, M. T. Petersen, and V. Thiagarajan, Multifunctional magnetic iron oxide nanoparticles : diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications, BMC Materials, 1 (2019) 1–22.
[60] A. Sobhani and M. Salavati-niasari, Synthesis and characterization of FeSe2 nanoparticles and FeSe2/FeO (OH) nanocomposites by hydrothermal method, Journal of Alloys and Compounds, 625 (2015) 26–33.
[61] H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, and X. Shi, Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications, ACS Applied Materials & Interfaces, 5 (2013) 1722-1731.
[62] M. Rozman, M. Drofenik, I. Introduction, E. Procedure, P. Alto, and H. Wycombe, Hydrothermal synthesis of manganese zinc ferrites, Journal of the American Ceramic Society, 78 (1995) 2449-55.
[63] Y. Hakuta, T. Adschiri, T. Suzuki, T. Chids, K. Seino, and K. Arai, Flow method for rapidly producing barium hexaferrite particles in supercritical water, Journal of the American Ceramic Society, 81 (1998) 2461–2464.
[64] N. Yadav, A. Singh, and M. Kaushik, Hydrothermal synthesis and characterization of magnetic Fe3O4 and APTS coated Fe3O4 nanoparticles : physicochemical investigations of interaction with DNA, The Journal of Materials Science: Materials in Medicine, 31 (2020) 1–11.
[65] S. Laurent D. Forge, M. Port, A. Roch, C. Robic, L. V. Elast and R. N. Muller Magnetic Iron Oxide Nanoparticles : Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chemical Reviews, 108 (2008) 2064–2110.
[66] M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, and V. G. Harris, Chemically prepared magnetic nanoparticles, International Materials Reviews, 49 (2004) 125–170.
[67] O. Margeat, M. Respaud, C. Amiens, P. Lecante, and B. Chaudret, Ultrafine metallic Fe nanoparticles : synthesis, structure and magnetism, Beilstein Journal of Nanotechnology, 1 (2010) 108–118.
[68] T. O. Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassand, P. Lecante, M.-J. Casanove, A. Mosset, M. Respaud, and J.-M. Broto, Nanoscale Bimetallic CoxPt1-x Particles Dispersed in Poly ( vinylpyrrolidone ): Synthesis from Organometallic Precursors and Characterization, The Journal of Physical Chemistry B, 104 (2000) 695–702.
[69] A. Eatemadi, H. Daraee, N. Zarghami, H. M. Yar, and A. Akbarzadeh, Nanofiber : Synthesis and biomedical applications, Artificial Cells, Nanomedicine and Biotechnology, 44 (2011) 111-121.
[70] M. Alagiri, S. Ponnusamy and C. Muthamizhchelvan, Synthesis and characterization of NiO nanoparticles by sol – gel method, Journal of Materials Science: Materials in Electrons, 23 (2011) 728–732.
[71] C. Jeffrey Brinker, George W. Scherer, Sol-Gel Science: The physics and chemistry of sol-gel processing, Physical Sciences and Engineering, (1990) 1-17.
[72] M. Parashar, V. Kumar, and S. Ranbir, Metal oxides nanoparticles via sol – gel method : a review on synthesis, characterization and applications, Journal of Materials Science: Materials in Electrons, 31 (2020) 3729-3749.
[73] K. Gudikandula and S. C. Maringanti, Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties, Journal of Experimental Nanoscience, 11 (2016) 714–721.
[74] S. Majidi, F. Z. Sehrig, S. M. Fakhani, M. S. Goloujeh and A. Akbarzadeh, Current methods for synthesis of magnetic nanoparticles, Artificial Cells, Nanomedicine, and Biotechnology. 44 (2014) 722-734.
[75] Z. Surowiec, M. Budzynski, K. Durak, and G. Czernel, Synthesis and characterization of iron oxide magnetic nanoparticles, Nukleonika, 62 (2017) 73–77.
[76] S. Gul, S. B. Khan, I. U. Rehman, M. A. Khan, and M. I. Khan, A comprehensive review of magnetic nanomaterials modern day theranostics, Frontires in Materials. 6 (2019) 1–15.
[77] M. C. Mascolo, Y. Pei, T. A. Ring, S. L. City, and S. Latium, Room temperature co-precipitation synthesis of Magnetite nanoparticles in a large pH window with different bases, Materials, 6 (2013) 5549–5567.
[78] J. C. Freitas, R. M. Branco, I. G. Lisboa, T. P. da Costa, M. G. Campos, M. J. Junior and R. F. Marques, Magnetic nanoparticles obtained by homogeneous coprecipitation sonochemically assisted, Journal of Materials Research, 18 (2015) 220–224.
[79] D. T. Lucas, D. A. Sica, R. H. Cássia, and B. M. Luciano, Iron oxide magnetic nanoparticles as antimicrobial for therapeutics, Pharmaceutical Development and Technology, 23 (2013) 316-323.
[80] H. Zhao, R. Liu, Q. Zhang, and Q. Wang, Effect of surfactant amount on the morphology and magnetic properties of monodisperse ZnFe2O4 nanoparticles, Materials Research Bulletin, 75 (2016) 172-177.
[81] A. Salabat and F. Mirhoseini, A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles, Journal of Molecular Liquids, 268 (2018) 849–853.
[82] L. Gutiérrez, R. Costo, C. Gruttner, F. Westphal, N. Gehrke, D. Heinke, A. Fornara, Q. A. Pankhurst, C. Johansson, S. Veintemillas-Verdaguer, and M. P. Morales, Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications, Salton Transactions, 44 (2015) 2943-2952.
[83] J. K. Yamchi, M. Mobasseri, A. Akbarzadeh, S. Davaran, A. Ostad-Rahimi, H. Hamishehkar, R. Salehi, Z. Bahmani, K. Nejati-Koshki, A. Darbin and M. R. Yamchi, Preparation of pH sensitive insulin-loaded nano hydrogels and evaluation of insulin releasing in different pH conditions, Molecular Biology Reports, 41 (2014) 6705-6712.
[84] M. J. Williams, E. Sanchez, E. R. Aluri, F. J. Douglas, D. A. MacLaren, O. M. Collins, E. J. Cussens, J. D. Budge, L. C. Sanders, M. Michaelis, C. M. Smales, J. D. Budge, L. C. Sanders, M. Michaelis, C. M. Smales, J. C. Jr., S. Lorrio, D. Krueger, Rafael T. M., and S. A. Corr, Microwave-assisted synthesis of highly crystalline, multifunctional iron oxide nanocomposites for imaging applications, RSC Advances, 6 (2016) 83520-83528.
[85] N. Joshi, J. Filip, V. S. Coker, J. Sadhukhan, I. Safarik, H. Bagshaw and J. R. Lloyd, Microbial reduction of natural Fe (III) minerals ; toward the sustainable production of functional magnetic nanoparticles, Frontiers in Environmental Science, 6 (2018) 1–11.
[86] S. Shukla, R. Khan, and A. Daverey, Environmental Technology & Innovation Synthesis and characterization of magnetic nanoparticles , and their applications in wastewater treatment : A review, Environmental Technology and Innovation, 24 (2021) 101924.
[87] P. Singh, Y. Kim, D. Zhang, and D. Yang, Biological synthesis of nanoparticles from plants and microorganisms, Trends in Biotechnology, 34 (2016) 588–599.
[88] R. G. Chaudhary, A. K. Potbhare, P. B. Chouke, A. R. Rai, R. Mishra, M. F. Desimone, and A. A. Abdala, Graphene-based materials and their nanocomposites with metal oxides : biosynthesis, electrochemical, photocatalytic and antimicrobial applications, Material Research Forum. 83 (2020) 79-116.
[89] P. B. Chouke, K. M. Dadure, A. K. Potbhare, G. S. Bhusari, A. Mondal, K. Chaudhary, V. Singh, M.F. Desimone, R.G. Chaudhary, D.T. Masram, Biosynthesized δ-Bi2O3 Nanoparticles from Crinum viviparum flower extract for photocatalytic dye degradation and molecular docking, ACS Omega, 2022, 7 (24),20983–20993.
[90] P. B. Chouke, A. Potbhare, G. Bhusari, S. Somkuwar, D. P. Shaik, R. Mishra and R. G. Chaudhary, Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity, Advanced Materials Letter, 10 (2019) 355–360.
[91] J. A. Tanna, R. G. Chaudhary, N. V. Gandhare, A. R. Rai, S. Yerpude and H. D. Juneja, Copper nanoparticles catalysed an efficient one-pot multicomponent synthesis of chromenes derivatives and its antibacterial activity, Journal of Experimental Nanoscience, 11 (2016) 884-900.
[92] A. M. Awwad and N. M. Salem, A Green and Facile Approach for Synthesis of Magnetite Nanoparticles, nanoscience and nanotechnology, 2 (2012) 208-213.
[93] M. V Yigit, A. Moore, and Z. Medarova, Magnetic Nanoparticles for Cancer Diagnosis and Therapy, Pharmaceutical Research, 29 (2012) 1180–1188.
[94] S. Motaali, M. Pashaeiasl, S. Davaran, and A. Akbarzadeh, Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug, Artificial Cells, Nanomedicine, and Biotechnology, 43 (2017) 560-567.
[95] Y. Wang, Y. Liao, C. Liu, J. Yu, Y. Yamauchi, S. A. Hossain, and K. C. Wu, Tri-functional Fe3O4/CaP/Alginate core-shell- corona nanoparticles for magnetically guiding, pH- responsive, and chemically targeting chemotherapy, ACS Biomaterials Science & Engineering, 3 (2017) 2366-2374.
[96] N. D. Thorat, R. A. Bohara, S. M. Tofail, Z. A. Alothman, M. A. Shiddiky, S. A. Hossain, Y. Yamauchi, and K. Wu, Superparamagnetic gadolinium ferrite nanoparticles with controllable curie temperature – cancer theranostics for MR- imaging-guided magneto-chemotherapy, European Journal of Inorganic Chemistry, 28 (2016) 4586-4597.
[97] T. A. P. Rocha-santos, Sensors and biosensors based on magnetic nanoparticles, Trends in Analytical Chemistry, 62 (2014) 28–36.
[98] D. Issadore, J. Chung, H. Shao, M. Liong, A. A. Ghazani, C. M. Castro, R. Weissleder, and H. Lee, Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector, Science Translational Medicine, 4 (2012) 141.
[99] D. Lin, J. Wu, M. Wang, F. Yan, and H. Ju, Triple signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing, Analytical Chemistry, 84 (2012) 3662-3668.
[100] A. S. Lãbbe, C. Bergemann, H Riess, F. Schriever, P. Reichrdt, K. Possinger, M. Matthias, B. Dorken, F. Herrmann, R. Gurtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A J Lemke, D. Ohlendorf, W. Huhnt, and D. Huhn, Clinical experiences with magnetic drug targeting : a phase I study with 4′- epidoxorubicin in 14 patients with advanced solid tumors, Cancer Research, 56 (1996) 4686-4693.
[101] N. A. Frey, S. Peng, K. Cheng, and S. Sun, Magnetic nanoparticles : synthesis, functionalization, and applications in bioimaging and magnetic energy storage, Chemical Society Reviews, 38 (2009) 2532–2542.
[102] S. Rasaneh and M. Dadras, The possibility of using magnetic nanoparticles to increase the therapeutic efficiency of Herceptin antibody, Biomedical Engineering / Biomedizinisch. Technik, 60 (2015).
[103] J. Chen, M. Shi, P. Liu, A. Ko, W. Zhong, W. Liao, and M. Xing, Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery, Biomaterials, 35 (2014) 1240–1248.
[104] E. Augustin, B. Czubek, A. M. Nowicka, A. Kowalczyk, Z. Stojek, and Z. Mazerska, Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles, Toxicology in Vitro, 33 (2016) 45-53.
[105] A. Aires, S. M. Ocampo, B. M. Simoes, M. J. Rodriguez, J. J. Cadenas, P. Coulead, K. Spence, A. Latorre, R. Miranda, A. Somoza, R. B. Clarke, J. L. Carrascosa, and A. L. Cortajarena, Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells, Nanotechnology, 27 (2016) 065103.
[106] N. Avedian, F. Zaaeri, M. P. Daryasari, H. A. Javar, and M. Khoobi, pH-Sensetive biocompatible mesoporous magnetic nanoparticles labeled with folic acid as an efficient carrier for controlled anticancer drug delivery, Journal of Drug Delivery Science and Technology, 44 (2018) 323-332.
[107] M. Namdeo, S. Saxena, R. Tankhiwale, M. Bajpai, Y. M. Mohan and S. K. Bajpai, Magnetic nanoparticles for drug delivery applications, Journal of Nanoscience and Nanotechnology, 8 (2018) 3247-3271.
[108] A. Sato, N. Itcho, H. Ishiguro, D. Okamoto, N. Kobayashi, K. Kawai, H. Kasai, D. Kurioka, H. Uemura, Y. Kubota, and M. Watanabe, Magnetic nanoparticles of Fe3O4 enhance docetaxel-induced prostate cancer cell death, International Journal of Nanomedicine, 8 (2013) 3151–3160.
[109] R. Tarasi, M. Khoobi, H. Niknejad, A. Ramazani, L. Ma’mani, S. Bahadorikhalili, and A. Shafiee, β -Cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe3O4 magnetic nanoparticles: A novel biocompatible nonocomposite for targeted docetaxel delivery, Journal of Magnetism and Magnetic Materials, 417 (2016) 451-459.
[110] T. Mahsa, N. Hamed, K. M. Hamidreza, and B. K. Ali, Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles, Drug Development and Industrial Pharmacy, (2018) 1520-5762.
[111] H. Yu, Y. Wang, S. Wang, X. Li, W. Li, D. Ding, X. Gong, M. Keidar, and W. Zhang, Paclitaxel-Loaded Core-shell Magnetic Nanoparticles and Cold Atmospheric Plasma Inhibit Non-small Cell Lung Cancer Growth, ACS Applied Materials & Interfaces, 10 (2018) 43462-43471.
[112] L. Zhao, M. Huo, J. Liu, Z. Yao, D. Li, Z. Zhao, and J. Tang, In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment, Journal of Nanoscience and Nanotechnology, 13 (2013) 741–745.
[113] J. L. Viota, A. Carazo, J. A. Munoz-gamez, K. Rudzka, R. Gómez-sotomayor, A. Ruiz-extremera, J. Salmeron and A. V. Delgado, Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells. Physicochemical in vitro evaluation, Material Science and Engineering: C Materials for Biological Applications, 33 (2013) 1183–1192.
[114] M. Parsıan, G. Unsoy, P. Mutlu, S. Yalcin, A. Tezcaner, and U. Gunduz, Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug, European Journal of Pharmacology, 784 (2016) 121-128.
[115] G. Unsoy, S. Yalcin, R. Khodadust, P. Mutul, O. Onguru, and U. Gunduz, Chitosan magnetic nanoparticles for pH responsive Bortezomib release in cancer therapy, Biomedicine & Pharmacotherapy. 68 (2014) 641-648.
[116] M. P. Alvarez-Berriios, A. Castillo, C. Rinaldi, and M. Torres-Lugo, Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines, International Journal of Nanomedicine, 9 (2014) 145–153.
[117] M. Rahimi, K. D. Safa, and R. Salchi, Co-delivery of dexorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drugs delivery in combination chemotherapy, Polymer Chemistry, 8 (2017) 7333-7350.
[118] I. Zaman, F. M. Nor, B. Manshoor, A. Khalid, and S. Araby, Influence of interface on epoxy/clay nanocomposites: 2. mechanical and thermal dynamic properties, Procedia Manufacturing, 2 (2015) 23-27.
[119] K. McNamara and Syes A. M. Tofail, Nanosystems: the use of nanoalloys, metallic, biometallic, and magnetic nanoparticles in biomedical applications, Physical Chemistry Chemical Physics, 17 (2015) 27981-27995.
[120] B. Thiesen and A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia, International Journal of Hyperthermia, 26 (2009) 467-474.
[121] S. Hatamie, Z. Malaie, M. Mahdi, and T. Mortezazadeh, Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice, Journal of Drug Delivery Sciences and Technology, 65 (2021) 102680.
[122] S. K. Sharma, N. Shrivastava, F. Rossi, L. D. Tung, and N. T. Thanh, Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment, Nanotoday, 29 (2019) 100795.
[123] S. Hatamie, M. Ahadian, M. Ghiass, A. Zad, R. Saber, B. Pareh, M. Oghabian, and S. Zadeh, Graphene/Cobalt nanocarrier for hyperthermia therapy and MRI diagnosis, Colloids Surfaces B Biointerfaces, 146 (2016) 271-279.
[124] S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, Magnetic fluid hyperthermia : Focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science, 166 (2021) 8–23.
[125] C. Grüttner, K. Müller, J. Teller, and F. Westphal, Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications, International Journal of Hyperthermia. 29 (2013) 777-789.
[126] T. Kobayashi, Cancer hyperthermia using magnetic nanoparticles, Biotechnology Journal, 6 (2011) 1342–1347.
[127] Harvey B. Simon, Hyperthermia, The New England Journal of Medicine, 329 (1993) 483-487.
[128] M. Ba, A. Teijeiro, and J. Rivas, Magnetic nanoparticle-based hyperthermia for cancer treatment, Reports of Practical Oncology & Radiotherapy, 18 (2013) 397–400.
[129] P. Golstein and G. Kroemer, Cell death by necrosis : towards a molecular definition, Trends in Biochemical Sciences, 32 (2017) 37-43.
[130] A. Jordan, R. Scholz, P. Wust, H. Fahling, and R. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials. 201 (1999) 413–419.
[131] A. Hervault, and N. K. Thanh, Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer, Nanoscale, 6 (2014) 11553-11573.
[132] K. Hayashi, M. Nakamura, W. Sakamoto, T. Yogo, H. Miki, S. Ozaki, M. Abe, T. Matsumoto, and K. Ishimura, Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment, Theranostics, 3 (2013) 366-376.
[133] L. Jie, L. Cai, L. Wang, X. Ying, R. Yu, M. Zhang, and Y. Du, Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging, International Journal of Nanomedicine, 7 (2012) 3981–3989.