Ferromagnetic Ni Nanostructures via Chemical Reduction Methods


Ferromagnetic Ni Nanostructures via Chemical Reduction Methods

Ramany Revathy, Manoj Raama Varma, Kuzhichalil Peethambharan Surendran

For the last couple of decades, nickel (Ni) nanostructures are in the focus of active research since they are widely applied in countless walks of modern life. But being tiny magnets, their synthesis in monodisperse form is extremely challenging. In this chapter, we review the recent trends in the synthesis of Ni through chemical reduction routes without the aid of magnetic field, hydrothermal environments, and templates. The particle size and morphology of the synthesized Ni nanostructures can easily be tailored by controlling the reaction conditions. Depending on particle size and morphology, these ferromagnetic nanomaterials have a wide variety of applications in various technological fields.

Magnetic Nanostructures, Wet Chemical Reduction, Hierarchical Nickel Nanostructures, pH Value, Hydrazine

Published online , 30 pages

Citation: Ramany Revathy, Manoj Raama Varma, Kuzhichalil Peethambharan Surendran, Ferromagnetic Ni Nanostructures via Chemical Reduction Methods, Materials Research Foundations, Vol. 143, pp 140-169, 2023

DOI: https://doi.org/10.21741/9781644902335-5

Part of the book on Magnetic Nanoparticles for Biomedical Applications

[1] L.A. Paramo, A.A. Feregrino-Perez, R. Guevara, S. Mendoza, K. Esquivel, Nanoparticles in agroindustry: applications, toxicity, challenges, and trends, Nanomaterials. 10 (2020) 1654. https://doi.org/10.3390/nano10091654
[2] D.E. Laughlin, D.N. Lambeth, Microstructural and crystallographic aspects of thin film recording media, IEEE Transactions on Magnetics. 36 (2000) 48-53. https://doi.org/10.1109/20.824424
[3] B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles : surface effects and properties related to biomedicine applications, Int. J. Mol. Sci. 14 (2013) 21266-21305. https://doi.org/10.3390/ijms141121266
[4] S. Schrittwieser, D. Reichinger, J. Schotter, Applications, Surface modification and functionalization of nickel nanorods, Materials. 11 (2018) 45. https://doi.org/10.3390/ma11010045
[5] A. Sagasti, V. Palomares, J.M. Porro, I. Orue, M.B. SanchezIlarduya, A.C. Lopes, J. Gutiérrez, Magnetic, magnetoelastic and corrosion resistant properties of (Fe-Ni)-based metallic glasses for structural health monitoring applications, Materials. 13 (2020) 57-70. https://doi.org/10.3390/ma13010057
[6] F. Ma, Q. Li, J. Huang, J. Li, Morphology control and characterizations of nickel sea-urchin-like and chain-like nanostructures, J. Cryst. Growth. 310 (2008) 3522-3527. https://doi.org/10.1016/j.jcrysgro.2008.04.044
[7] E. Verrelli, D. Tsoukalas, D. Giannakopoulos, K Kouvatsos, P. Normand, D.E. Ioannou, Nickel nanoparticle deposition at room temperature for memory applications, Microelectron. Eng. 84 (2007) 1994-1997. https://doi.org/10.1016/j.mee.2007.04.078
[8] I. Bibi, S. Kamal, A. Ahmed, M. Iqbal, S. Nouren, K. Jilani, N. Nazar, M. Amir, A. Abbas, S. Ata, F. Majid, Nickel nanoparticle synthesis using camellia sinensis as reducing and capping agent: growth mechanism and photocatalytic activity evaluation, Int. J. Biol Macromol. 103 (2017) 783-790. https://doi.org/10.1016/j.ijbiomac.2017.05.023
[9] Y. Cheng, M. Guo, M. Zhai, Y. Yu, J. Hu, Nickel nanoparticles anchored onto Ni foam for supercapacitors with high specific capacitance, J. Nanosci . Nanotechnol. 20 (2020) 2402-2407. https://doi.org/10.1166/jnn.2020.17377
[10] A.R. Abdel Fattah, T. Majdi, A.M. Abdalla, S. Ghosh, I.K. Puri, Nickel nanoparticles entangled in carbon nanotubes: novel ink for nanotube printing, ACS Appl. Mater. Interfaces. 8 (2016) 1589-1593. https://doi.org/10.1021/acsami.5b11700
[11] M.M. Barsan, T.A. Enache, N. Preda, G. Stan, N.G. Apostol, E. Matei, A. Kuncser, V. Diculesc C., Direct immobilization of biomolecules through magnetic forces on Ni electrodes via Ni nanoparticles: applications in electrochemical biosensors, ACS Appl. Mater. Interfaces. 11 (2019) 19867-19877. https://doi.org/10.1021/acsami.9b04990
[12] A.P. Reena Mary, C.. S.S. Sandeep, T.. N. Narayanan, R. Philip, P. Moloney, P.M. Ajayan, M.. . Anantharaman, Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles, Materials. 22 (2011) 375702-375708. https://doi.org/10.1088/0957-4484/22/37/375702
[13] R. Krishnapriya, S. Praneetha, A. V Murugan, Microwave-solvothermal synthesis of various TiO2 nano-morphologies with enhanced efficiency by incorporating Ni nanoparticles in an electrolyte for dye-sensitized solar cells, Inorg. Chem. Front. 4 (2017) 1665-1678. https://doi.org/10.1039/C7QI00329C
[14] K. Raj, B. Moskowitz, R. Casciari, Advances in ferrofluid technology, J. Magn. Magn. Mater. 149 (1995) 174-180. https://doi.org/10.1016/0304-8853(95)00365-7
[15] S.H. Wu, D.H. Chen, Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol, J. Colloid Interface Sci. 259 (2003) 282-286. https://doi.org/10.1016/S0021-9797(02)00135-2
[16] R. Eluri, B. Paul, Synthesis of nickel nanoparticles by hydrazine reduction: mechanistic study and continuous flow synthesis, J. Nanopart. Res. 14:800 (2012) 1-14. https://doi.org/10.1007/s11051-012-0800-1
[17] W. Wernsdorfer, K. Hasselbach, A. Benoit, B. Barbara, B. Doudin, J. Meier, J. Ansermet, D. Mailly, Measurements of magnetization switching in individual nickel nanowires, Phy. Rev. B. 55 (1997) 11552-11559. https://doi.org/10.1103/PhysRevB.55.11552
[18] Z. Huajun, Z. Jinhuan, G. Zhenghai, W. Wei, Preparation and magnetic properties of Ni nanorod arrays, J. Magn. Magn. Mater. 320 (2008) 565-570. https://doi.org/10.1016/j.jmmm.2007.07.018
[19] X. Ni, Q. Zhao, H. Zheng, J. Song, D. Zhang, X. Zhang, A novel chemical reduction route towards the synthesis of crystalline nickel nanoflowers from a mixed source, Eur. J. Inorg. Chem. 23 (2005) 4788-4793. https://doi.org/10.1002/ejic.200500453
[20] M. Sanles-Sobrido, M. Bañobre-López, V. Salgueiriño, M.A. Correa-Duarte, B. Rodríguez-González, J. Rivas, L.M. Liz-Marzán, Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth, J Mater. Chem. 20 (2010) 7360-7365. https://doi.org/10.1039/c0jm01107j
[21] S.H. Xu, G.T. Fei, H.M. Ouyang, Y. Zhang, P.C. Huo, L. De Zhang, Controllable fabrication of nickel nanoparticle chains based on electrochemical corrosion, Journal of Materials Chemistry C. 3 (2015) 2072-2079. https://doi.org/10.1039/C4TC02450H
[22] Nicola A Spaldin, Magnetic Materials: Fundamentals and applications, 2nd ed., Cambridge University Press, New York, 2011.
[23] Y. Koltypin, A. Fernandez, T.. Rojas, J. Campora, P. Palma, R. Prozorov, A. Gedanken, Encapsulation of Nickel Nanoparticles in Carbon Obtained by the Sonochemical Decomposition of Ni(C8H12)2, Chem. Mater. 11 (1999) 1331-1335. https://doi.org/10.1021/cm981111o
[24] T.O. Ely, C. Amiens, B. Chaudret, E. Snoeck, M. Verelst, M. Respaud, J.-M. Broto, Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties, Chem. Mater. 11 (1999) 526-529. https://doi.org/10.1021/cm980675p
[25] N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, B. Chaudret, Synthesis and magnetic properties of nickel nanorods, Nano Lett. 1 (2001) 565-568. https://doi.org/10.1021/nl0100522
[26] A.-G. Boudjahem, S. Monteverdi, M. Mercy, D. Ghanbaja, M.M. Bettahar, Nickel nanoparticles supported on silica of low surface area. hydrogen chemisorption and TPD and catalytic properties, Catal. Lett. 84 (2002) 115-122. https://doi.org/10.1023/A:1021093005287
[27] Y.-P. Sun, H.. Rollins, R. Guduru, Preparations of Nickel, Cobalt, and Iron Nanoparticles through the Rapid Expansion of Supercritical Fluid Solutions (RESS) and chemical reduction, Chem. Mater. 11 (1999) 7-9. https://doi.org/10.1021/cm9803253
[28] A. Duteil, G. Schmid, W. Meyer-Zaika, Ligand stabilized nickel colloids, J. Chem. Soc. Chem. Commun. (1995) 31-32. https://doi.org/10.1039/c39950000031
[29] C.. Murray, S. Sun, H. Doyle, T. Betley, Monodisperse 3d transition-metal (Co,Ni,Fe) nanoparticles and their assembly into nanoparticle superlattices, MRS Bull. 26 (2001) 985-991. https://doi.org/10.1557/mrs2001.254
[30] J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.-J. Noh, J.-H. Park, C.J. Bae, J.-G. Park, T. Hyeon, Monodisperse Nanoparticles of Ni and NiO. Synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction., Adv. Mater. 17 (2005) 429-434. https://doi.org/10.1002/adma.200400611
[31] C.J. Pandian, R. Palanivel, S. Dhanasekaran, Screening antimicrobial activity of nickel nanoparticles synthesized using ocimum sanctum leaf extract, J. Nanopart. 2016 (2016) 1-13. https://doi.org/10.1155/2016/4694367
[32] H. Chen, J. Wang, D. Huang, X. Chen, J. Zhu, D. Sun, J. Huang, Q. Li, Plant mediated synthesis of size-controllable Ni nanoparticles with alfalfa extract, Mater. Lett. 122 (2014) 166-169. https://doi.org/10.1016/j.matlet.2014.02.028
[33] S.A. Mamuru, A.S. Bello, S.B. Hamman, Annona squamosa leaf extract as an efficient bioreducing agent in the synthesis of chromium and nickel nanoparticles, IJASBT. 3 (2015) 167-169. https://doi.org/10.3126/ijasbt.v3i2.11651
[34] H. Guo, B. Pu, H. Chen, J. Yang, Y. Zhou, J. Yang, B. Bismark, H. Li, X. Niu, Surfactant assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties, Nanoscale Res Lett. 11 (2016) 352-367. https://doi.org/10.1186/s11671-016-1562-y
[35] Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian, Complex‐ surfactant‐assisted hydrothermal route to ferromagnetic nickel nanobelts, Adv. Mater. 15 (2003) 1946-1948. https://doi.org/10.1002/adma.200305663
[36] W. Xu, K.Y. Liew, H. Liu, T. Huang, C. Sun, Y. Zhao, Microwave-assisted synthesis of nickel nanoparticles, Mater. Lett. 62 (2008) 2571-2573. https://doi.org/10.1016/j.matlet.2007.12.057
[37] J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, Q. Ma, Template synthesis of an array of nickel nanotubules and its magnetic behavior, Adv. Mater. 13 (2001) 1631-1633. https://doi.org/10.1002/1521-4095(200111)13:21<1631::AID-ADMA1631>3.0.CO;2-R
[38] J. Wang, L.Y. Zhang, P. Liu, T.M. Lan, J. Zhang, L.M. Wei, E.S.-W. Kong, C.H. Jiang, Y.F. Zhang, Preparation and growth mechanism of nickel nanowires under applied magnetic field, Nano-Micro Lett. 2 (2010) 134-138. https://doi.org/10.1007/BF03353631
[39] A. Pandey, R. Manivannan, A Study on synthesis of nickel nanoparticles using chemical reduction technique, Recent Pat. Nanotechnol . 5 (2015) 33-37. https://doi.org/10.2174/1877912305666150417232717
[40] K.R. Krishnadas, P.R. Sajanlal, T. Pradeep, Pristine and hybrid nickel nanowires: Template, magnetic field, and surfactant-free wet chemical synthesis and raman studies, J. Phys. Chem. C. 115 (2011) 4483-4490. https://doi.org/10.1021/jp110498x
[41] M.D. Hossain, R.A. Mayanovic, S. Dey, R. Sakidja, M. Benamara, Room-temperature ferromagnetism in Ni(ii)-chromia based core-shell nanoparticles: experiment and first principles calculations, Phys. Chem. Chem. Phys. 20 (2018) 10396-10406. https://doi.org/10.1039/C7CP08597D
[42] D.H. Chen, S.H. Wu, Synthesis of nickel nanoparticles in waterin-oil microemulsions, Chem. Mater. 12 (2000) 1354-1360. https://doi.org/10.1021/cm991167y
[43] L. Karam, J. Reboul, N. El Hassan, J. Nelayah, P. Massiani, Nanostructured nickel aluminate as a key intermediate for the production of highly dispersed and stable nickel nanoparticles supported within mesoporous alumina for dry reforming of methane, Molecules. 24 (2019) 4107-4119. https://doi.org/10.3390/molecules24224107
[44] W. You, R. Che, Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface, ACS Appl. Mater. Interfaces. 10 (2018) 15104-15111. https://doi.org/10.1021/acsami.8b03610
[45] C.A. Sequeira, D.S. Cardoso, L. Amaral, B. Šljukić, D.M. Santos, On the performance of commercially available corrosion resistant nickel alloys: a review, Corros. Rev. 34 (2016) 187-200. https://doi.org/10.1515/corrrev-2016-0014
[46] M. Imran Din, A. Rani, Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness, Int. J. Anal .Chem. 2016 (2016) 1-4. https://doi.org/10.1155/2016/3512145
[47] G.R. Thellaputta, P.S. Chandra, C. Rao, Machinability of nickelbased superalloys: a review, Mater. Today Proc. 4 (2017) 3712-3721. https://doi.org/10.1016/j.matpr.2017.02.266
[48] R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review, J. Alloys Compd. 734 (2018) 89-111. https://doi.org/10.1016/j.jallcom.2017.10.262
[49] L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Nickel-based materials for supercapacitors, Mater. Today. 25 (2019) 35-65. https://doi.org/10.1016/j.mattod.2018.11.002
[50] H. Ni, J. Zhu, Z. Wang, H. Lv, Y. Su, X. Zhang, A brief overview on grain growth of bulk electrodeposited nanocrystalline nickel and nickel-iron alloys, Rev. Adv. Mater. Sci. 58 (2019) 98-106. https://doi.org/10.1515/rams-2019-0011
[51] N.-D. Jaji, H.L. Lee, M.H. Hussin, H.M. Akil, M.R. Zakaria, M.B.H. Othman, Advanced nickel nanoparticles technology: From synthesis to applications, Nanotechnol. Rev. 9 (2020) 1456-1480. https://doi.org/10.1515/ntrev-2020-0109
[52] A.M. Ealias, M. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application, IOP Conf. Ser. Mater. Sci . Eng. 263 (2017) 32019-32032. https://doi.org/10.1088/1757-899X/263/3/032019
[53] J.K. Basu, S. Sengupta, Catalytic reduction of nitrobenzene using silver nanoparticles embedded calcium alginate film, J. Nanosci . Nanotechnol. 19 (2019) 7487-7492. https://doi.org/10.1166/jnn.2019.16669
[54] Y. Hou, H. Kondoh, T. Ohta, S. Gao, Size-controlled synthesis of nickel nanoparticles, Appl. Surf. Sci. 241 (2005) 218-222. https://doi.org/10.1016/j.apsusc.2004.09.045
[55] G. Villaverde-Cantizano, M. Laurenti, J. Rubio-Retama, R. Contreras-Cáceres, Reducing agents in colloidal nanoparticle synthesis – an Introduction, in: Nanoscience & Nanotechnology Series, RSC, 2021: pp. 1-27. https://doi.org/10.1039/9781839163623-00001
[56] M.T. Rahman, E. V. Rebrov, Microreactors for gold nanoparticles synthesis: from faraday to flow, Processes. 2 (2014) 466-493. https://doi.org/10.3390/pr2020466
[57] K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalton Trans. 44 (2015) 17883-17905. https://doi.org/10.1039/C5DT02964C
[58] T.S. Rodrigues, M. Zhao, T.H. Yang, K.D. Gilroy, A.G.M. da Silva, P.H.C. Camargo, Y. Xia, Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants, Chem. – A Eur. J. 24 (2018) 16944 -16963. https://doi.org/10.1002/chem.201802194
[59] D. Gozzi, A. Latini, G. Capannelli, F. Canepa, M. Napoletano, M.R. Cimberle, M. Tropeano, Synthesis and magnetic characterization of Ni nanoparticles and Ni nanoparticles in multiwalled carbon nanotubes, J. Alloys Compd. 419 (2006) 32-39. https://doi.org/10.1016/j.jallcom.2005.10.012
[60] C.-M. Liu, L. Guo, R.-M. Wang, Y. Deng, H.-B. Xu, S. Yang, Magnetic nanochains of metal formed by assembly of small nanoparticles, Chem. Commun. (2004) 2726-2727. https://doi.org/10.1039/b411311j
[61] R. Revathy, M.R. Varma, K.P. Surendran, Effect of morphology and ageing on the magnetic properties of nickel nanowires, Mater. Res. Bull. 120 (2019) 110576. https://doi.org/10.1016/j.materresbull.2019.110576
[62] P.K. Khanna, P. V. More, J.P. Jawalkar, B.G. Bharate, Effect of reducing agent on the synthesis of nickel nanoparticles, Mater. Lett. 63 (2009) 1384-1386. https://doi.org/10.1016/j.matlet.2009.02.013
[63] H. Niu, Q. Chen, M. Ning, Y. Jia, X. Wang, Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields, J. Phys. Chem. B. 108 (2004) 3996-3999. https://doi.org/10.1021/jp0361172
[64] O. Antola, L. Holappa, P. Paschen, Nickel ore reduction by hydrogen and carbon monoxide containing gases, Miner. Process. Extr. Metall. Rev. 15 (1995) 169-179. https://doi.org/10.1080/08827509508914195
[65] J.W. Ju, M.Y. Jung, Formation of conjugated linoleic acids in soybean oil during hydrogenation with a nickel catalyst as affected by sulfur addition, J. Agric. Food Chem. 51 (2003) 3144-3149. https://doi.org/10.1021/jf0259213
[66] A.B. Elena, A. Cally, A. Allagui, S. Ntais, R. Wüthrich, Nickel particles with increased catalytic activity towards hydrogen evolution reaction, C. R. Chim. 16 (2013) 28-33. https://doi.org/10.1016/j.crci.2012.02.003
[67] M. Heilmann, H. Kulla, C. Prinz, R. Bienert, U. Reinholz, A.G. Buzanic, F. Emmerling, advances in nickel nanoparticle synthesis via oleylamine route, Nanomaterials. 10 (2020) 1-13. https://doi.org/10.3390/nano10040713
[68] T.G. Stuart, J.F. Stephen, R. Krchnavek, Controlled particle growth of silver sols through the use of hydroquinone as a selective reducing agent, Langmuir. 25 (2009) 2613-2621. https://doi.org/10.1021/la803680h
[69] S. Vivekanandhan, V. Manne, N. Satyanarayana, Effect of ethylene glycol on polyacrylic acid based combustion process for the synthesis of nano-crystalline nickel ferrite (NiFe2O4), Mater. Lett. 58 (2004) 2717-2720. https://doi.org/10.1016/j.matlet.2004.02.030
[70] M. Maize, H.A. El-Boraey, I.A. Mohamed, J.D. Holmes, G. Collins, Controlled morphology and dimensionality evolution of NiPd bimetallic nanostructures, J. Colloid Interface Sci. 585 (2021) 480-489. https://doi.org/10.1016/j.jcis.2020.10.030
[71] A. R, D. H, Sodium-dodecyl-sulphate-assisted synthesis of Ni nanoparticles: electrochemical properties, Bull. Mater. Sci. 40 (2017) 1361-1369. https://doi.org/10.1007/s12034-017-1500-3
[72] Z. Zhang, H. Chen, C. Xing, M. Guo, F. Xu, X. Wang, H.J. Gruber, B. Zhang, J. Tang, Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles, Nano Res. 4 (2011) 599-611. https://doi.org/10.1007/s12274-011-0116-y
[73] M. Ali, N. Remalli, V. Gedela, B. Padya, P.K. Jain, A. Al-Fatesh, U. Ali Rana, V.V.S.S. Srikanth, Ni nanoparticles prepared by simple chemical method for the synthesis of Ni/NiO-multi-layered graphene by chemical vapor deposition, Solid State Sci. 64 (2017) 34-40. https://doi.org/10.1016/j.solidstatesciences.2016.12.007
[74] K.J.A. Raj, B. Viswanathan, Synthesis of nickel nanoparticles with fcc and hcp crystal structures, Indian J. Chem. – Inorg. Phys. Theor. Anal. Chem. 50 (2011) 176-179.
[75] X. Zhou, Z. Chen, D. Yan, H. Lu, Deposition of Fe-Ni nanoparticles on polyethyleneimine-decorated graphene oxide and application in catalytic dehydrogenation of ammonia borane, J. Mater. Chem. 22 (2012) 13506-13516. https://doi.org/10.1039/c2jm31000g
[76] Y. Li, Y. Cao, D. Jia, A general strategy for synthesis of metal nanoparticles by a solid-state redox route under ambient conditions, J. Mater. Chem. A. 2 (2014) 3761 -3765. https://doi.org/10.1039/c3ta14427e
[77] N.R. Nik Roselina, A. Azizan, Ni nanoparticles: Study of particles formation and agglomeration, Procedia Eng. 41 (2012) 1620-1626. https://doi.org/10.1016/j.proeng.2012.07.359
[78] Y.D. Li, C.W. Li, H.R. Wang, L.Q. Li, Y.T. Qian, Preparation of nickel ultrafine powder and crystalline film by chemical control reduction, Mater. Chem. Phys. 59 (1999) 88-90. https://doi.org/10.1016/S0254-0584(99)00015-2
[79] J. Zhang, W. Xiang, Y. Liu, M. Hu, K. Zhao, Synthesis of high-aspect-ratio nickel nanowires by dropping method, Nanoscale Res. Lett. 11 (2016) 1-5. https://doi.org/10.1186/s11671-015-1209-4
[80] W. T. A, Jr., L.M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47 (1981) 1400. https://doi.org/10.1103/PhysRevLett.47.1400
[81] T.C. Halsey, Diffusion-limited aggregation as branched growth, MRS Online Proceedings Library. 367 (1994) 23-32. https://doi.org/10.1557/PROC-367-23
[82] H. Hu, K. Sugawara, Selective synthesis of metallic nickel particles with control of shape via wet chemical process, Mater. Lett. 62 (2008) 4339-4342. https://doi.org/10.1016/j.matlet.2008.07.033
[83] W.W. Mullins, R.F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys. 35 (1964) 444-451. https://doi.org/10.1063/1.1713333
[84] G. Zhang, T. Zhang, X. Lu, W. Wang, J. Qu, X. Li, Controlled synthesis of 3d and 1d nickel nanostructures using an external magnetic field assisted solution-phase approach, J. Phys. Chem. C. 111 (2007) 12663-12668. https://doi.org/10.1021/jp073075z
[85] D.W. Ã, D. Sun, H. Yu, H. Meng, Morphology controllable synthesis of nickel nanopowders by chemical reduction process, J. Cryst. Growth. 310 (2008) 1195-1201. https://doi.org/10.1016/j.jcrysgro.2007.12.052
[86] B. Zhao, B. Fan, G. Shao, B. Wang, X. Pian, W. Li, R. Zhang, Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method, Appl. Surf. Sci. 307 (2014) 293-300. https://doi.org/10.1016/j.apsusc.2014.04.029
[87] L.Y. Zhang, J. Wang, L.M. Wei, P. Liu, H. Wei, Y.F. Zhang, Synthesis of Ni nanowires via a hydrazine reduction route in aqueous ethanol solutions assisted by external magnetic fields, Nano-Micro Lett. 1 (2009) 49-52. https://doi.org/10.1007/BF03353607
[88] S. Sarkar, A.K. Sinha, M. Pradhan, M. Basu, Y. Negishi, T. Pal, Redox transmetalation of prickly nickel nanowires for morphology controlled hierarchical synthesis of nickel / gold nanostructures for enhanced catalytic activity and SERS responsive functional material, J. Phys. Chem. C. 115 (2011) 1659-1673. https://doi.org/10.1021/jp109572c
[89] R. Revathy, A.A. Nair, M. Raama Varma, K.P. Surendran, Magnetism of cobalt during oxidative ageing: A theory supported experimental investigation, Mater. Sci. Eng. B. 273 (2021) 115453. https://doi.org/10.1016/j.mseb.2021.115453
[90] S. Tang, S. Vongehr, H. Ren, X. Meng, Diameter-controlled synthesis of polycrystalline nickel nanowires and their size dependent magnetic properties, Cryst. Eng. Comm. 14 (2012) 7209. https://doi.org/10.1039/c2ce25855b
[91] Y.Y. Kong, S.C. Pang, S.F. Chin, Facile synthesis of nickel nanowires with controllable morphology, Materials Lett. 142 (2015) 1-3. https://doi.org/10.1016/j.matlet.2014.11.140
[92] A. Mathew, N. Munichandraiah, G.M. Rao, Synthesis and magnetic studies of flower-like nickel nanocones, Mater. Sci. Eng. B. 158 (2009) 7-12. https://doi.org/10.1016/j.mseb.2008.12.032
[93] S.H. Wu, D.H. Chen, Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol, J. Colloid Interface Sci. 259 (2003) 282-286. https://doi.org/10.1016/S0021-9797(02)00135-2
[94] S. Chandra, A. Kumar, P.K. Tomar, Synthesis of Ni nanoparticles and their characterizations, J. Saudi Chem. Soc. 18 (2014) 437-442. https://doi.org/10.1016/j.jscs.2011.09.008
[95] X. He, W. Zhong, C.T. Au, Y. Du, Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method, Nanoscale Res. Lett. 8 (2013) 1-10. doi:10.1186/1556-276X-8-446. https://doi.org/10.1186/1556-276X-8-446
[96] F. Jia, L. Zhang, X. Shang, Y. Yang, Non-aqueous sol-gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers, Adv. Mater. 20 (2008) 1050-1054. https://doi.org/10.1002/adma.200702159
[97] Z. Xia, W. Wen, Synthesis of nickel nanowires with tunable characteristics, Nanomaterials. 6 (2016) 19. https://doi.org/10.3390/nano6010019