Applications of Magnetic Oxide Nanoparticles in Hyperthermia

$30.00

Applications of Magnetic Oxide Nanoparticles in Hyperthermia

Robert C. Pullar

Magnetic oxide nanoparticles (NPs) are probably the most common nanomaterials in everyday biomedicine, and have been in use since the 1990’s. They are usually magnetic iron oxide NPs, made of magnetite (Fe3O4) or maghemite (γ-Fe2O3), or a mixture of the two. Both of these have the spinel structure, and other spinel ferrites such as ZnFe2O4, CoFe2O4 and NiFe2O4 are also used. For applications in magnetic hyperthermia these NPs must be below the magnetic domain size, making them superparamagnetic, which means that their magnetisation can be “switched on” by the application of an external magnetic field. Magnetic hyperthermia treatment is a form of thermotherapy which is used to kill tumour cells with thermal energy (heat) in a very localised manner, by causing magnetic oxide NPs to heat up near tumour cells. Under an applied AC magnetic field the magnetic spin of the NPs switches rapidly in direction, transforming the magnetic energy into thermal energy. Temperatures of 41-46 °C are sufficient, this localised heating elevating the temperature of tumour cells, inhibiting growth, killing them, or inducing tumour cell apoptosis. Magnetic NPs were first used in tumour thermotherapy in 1996, and since then there has been a great deal of research in this field. The treatment can be applied alone, or used in combination with other therapies such as surgery, radiotherapy and chemotherapy, and it has shown excellent synergistic effects in combination with anticancer drugs (chemotherapeutics).

Keywords
Magnetic Oxide Nano Particles, Spinel Structure, Cobalt Ferrite, Hyperthemia Application

Published online , 26 pages

Citation: Robert C. Pullar, Applications of Magnetic Oxide Nanoparticles in Hyperthermia, Materials Research Foundations, Vol. 143, pp 76-101, 2023

DOI: https://doi.org/10.21741/9781644902332-3

Part of the book on Magnetic Nanoparticles for Biomedical Applications

References
[1] P. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance, Nature 242 (1973) 190-191 https://doi.org/10.1038/242190a0
[2] R. Damadian, M. Goldsmith, L. Minkoff, NMR in cancer XVI: FONAR image of the live human body, Physiol. Chem. Physics 9 (1977) 97-100
[3] A. Seko, K. Yuge, F. Oba, A. Kuwabara, I. Tanaka, Phys. Rev. B 73 (2006) 184117 https://doi.org/10.1103/PhysRevB.73.184117
[4] X. Zeng, J. Zhang, S. Zhu, X. Deng, H. Ma, J. Zhang, Q. Zhang, P. Li, D. Xue, N. J. Mellors, X. Zhang, Y. Peng, Nanoscale 9 (2017) 7493-7500 https://doi.org/10.1039/C7NR02013A
[5] http://www.chemohollic.com/2016/07/spinels-normal-or-inverse.html
[6] Z. Liad, C. Chanéac, G. Berger, S. Delaunay, A. Graffd, G. Lefèvre, RSC Adv. 9 (2019) 33633-33642 https://doi.org/10.1039/C9RA03234G
[7] Z. Hedayatnasab, F. Abnisa , W. M. A. W. Daud, Mater. Design 123 (2017) 174-196 https://doi.org/10.1016/j.matdes.2017.03.036
[8] V. V. Mody, A. Singh, B. Wesley, Euro. J. Nanomed. 5 (2013) 11-21 https://doi.org/10.1515/ejnm-2012-0008
[9] M. Rajendran, R. C. Pullar, A. K. Bhattacharya, D. Das, S. N. Chintalapudi, C. K. Majumdar, J. Magn. Mag. Mater. 232 (2001) 71-83 https://doi.org/10.1016/S0304-8853(01)00151-2
[10] D. B. Reeves, J. B. Weaver, Crit. Rev. Biomed. Eng. 42 (2014) 85-93 https://doi.org/10.1615/CritRevBiomedEng.2014010845
[11] M. R. Horsman, J. Overgard, Clin. Oncol. 19 (2007) 418 https://doi.org/10.1016/j.clon.2007.03.015
[12] R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, C.B. Taylor, Ann. Surg. 146 (1957) 596-606 https://doi.org/10.1097/00000658-195710000-00007
[13] L. Roizin-Towle, J. P. Pirro, Int. J. Radiat. Oncol. Biol. Phys. 20 (1991) 751 https://doi.org/10.1016/0360-3016(91)90018-Y
[14] A. Jordan, P. Wust, R. Scholz, B. Tesche, H. Fähling, T. Mitrovics, T. Vogl, J. Cervós-Navarro, R. Felix, Int. J. Hyperthermia 12 (1996) 705 https://doi.org/10.3109/02656739609027678
[15] K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, C. Hadjipanayis, Int. J. Hyperthermia -34 (2018) 1316 https://doi.org/10.1080/02656736.2018.1430867
[16] M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldöfner, R. Scholz, S. Deger, P. Wust, S. A. Loening, and A. Jordan, Int. J. Hyperthermia. 21 (2005) 637-47 https://doi.org/10.1080/02656730500158360
[17] F. Brero, M. Albino, A. Antoccia, P. Arosio, M. Avolio, F. Berardinelli, D. Bettega, P. Calzolari, M. Ciocca, M. Corti, A. Facoetti, S. Gallo, F. Groppi, A. Guerrini, C. Innocenti, C. Lenardi, S. Locarno, S. Manenti, R. Marchesini, M. Mariani, F. Orsini, E. Pignoli, C. Sangregorio, I. Veronese, A. Lascialfari, Nanomaterials 10 (2020) 1 https://doi.org/10.3390/nano10101919
[18] P. Moroz, S. K. Jones, B. N. Gray, Int. J. Hyperthermia 18 (2002) 267 https://doi.org/10.1080/02656730110108785
[19] A. J. Giustini, A. A. Petryk, S. M. Cassim, J. A. Tate, I. Baker, P. J. Hoopes, Nano LIFE 1 (2010) 17-32 https://doi.org/10.1142/S1793984410000067
[20] I. Hilger, Int. J. Hyperthermia 29 (2013) 828 https://doi.org/10.3109/02656736.2013.832815
[21] I. Belyanina, O. Kolovskaya, S. Zamay, A. Gargaun, T. Zamay, A. Kichkailo, Molecules 22 (2017) 975 https://doi.org/10.3390/molecules22060975
[22] K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, J. Neuro-Oncology 103 (2011) 317 https://doi.org/10.1007/s11060-010-0389-0
[23] N. R. Datta, S. Krishnan, D. E. Speiser, E. Neufeld, N. Kuster, S. Bodis, H. Hofmann, Cancer Treatment Reviews 50 (2016) 217-227 https://doi.org/10.1016/j.ctrv.2016.09.016
[24] M. A. Gonzalez-Fernandez, T. E. Torres, M. Andrés-Vergés, R. Costo, P. de la Presa, C. J. Serna, M. P. Morales, C. Marquina, M. R. Ibarra, G. F. Goya, J. Solid State Chem. 182 (2009) 2779-2784 https://doi.org/10.1016/j.jssc.2009.07.047
[25] A. Sathya, P. Guardia, R. Brescia, N. Silvestri, G. Pugliese, S. Nitti, L. Manna, T. Pellegrino, Chem. Mater. 28 (2016) 1769-1780 https://doi.org/10.1021/acs.chemmater.5b04780
[26] P. B. Shete, R. M. Patil, N. D. Thorat, A. Prasad, R. S. Ningthoujam, S. J. Ghosh, S. H. Pawar, Appl. Surf. Sci. 288 (2014) 149-157 https://doi.org/10.1016/j.apsusc.2013.09.169
[27] P. Veverka, E. Pollert, K. Zaveta, S. Vasseur, E. Duguet, Nanotechnology 19 (2008) 215705 https://doi.org/10.1088/0957-4484/19/21/215705
[28] E. Pollert, P. Veverka, M. Veverka, O. Kaman, K. Zaveta, S. Vasseur, R. Epherre, G. Goglio, E. Duguet, Prog. Solid State Chem. 37 (2009) 1-14 https://doi.org/10.1016/j.progsolidstchem.2009.02.001
[29] A. U. Rashid, P. Southern, J. A. Darr, S. Awan, S. Manzoor, J. Magn. Mag. Mater. 344 (2013) 134-139 https://doi.org/10.1016/j.jmmm.2013.05.048
[30] M. Abdellahi, A. Najfinezhad, S. Saber-Samanadari, A. Khandan, H. Ghayoura, Chin. J. Phys. 56 (2018) 331-339 https://doi.org/10.1016/j.cjph.2017.11.016
[31] K. M. Krishnan, IEEE Trans Magn. 46 (2010) 2523-2558 https://doi.org/10.1109/TMAG.2010.2046907
[32] X. L. Liu, C. T. Ng, P. Chandrasekharan, H. T. Yang, L. Y. Zhao, E. Peng, Y. B. Lv, W. Xiao, J. Fang, J. B. Yi, H. Zhang, K. H. Chuang, B. H. Bay, J. Ding, H. M. Fan, Adv. Healthcare Mater. 5 (2016) 2092
[33] Y. Li, X. Liu, X. Zhang, W. Pan, N. Li, B. Tang, Chem. Commun. 57 (2021) 12087-12097 https://doi.org/10.1039/D1CC04604G
[34] M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi, Jpn. J. Cancer Res. 89 (1998) 775-782 https://doi.org/10.1111/j.1349-7006.1998.tb03283.x
[35] J. Huang, Y. Li, A. Orza, Q. Lu, P. Guo, L. Wang, L. Yang, H. Mao, Adv. Funct. Mater. 26 (2016) 3818 https://doi.org/10.1002/adfm.201504185
[36] J. Pan, P. Hu, Y. Guo, J. Hao, D. Ni, Y. Xu, Q. Bao, H. Yao, C. Wei, Q. Wu, J. Shi, ACS Nano 14 (2020) 1033-1044 https://doi.org/10.1021/acsnano.9b08550
[37] X. Liu, J. Zheng, W. Sun, X. Zhao, Y. Li, N. Gong, Y. Wang, X. Ma, T. Zhang, L. Y. Zhao, Y. Hou, Z. Wu, Y. Du, H. Fan, J. Tian, X. J. Liang, ACS Nano 13 (2019) 8811-8825 https://doi.org/10.1021/acsnano.9b01979
[38] A. Singh, V. Nandwana, J. S. Rink, S. R. Ryoo, T. H. Chen, S. D. Allen, E. A. Scott, L. I. Gordon, C. S. Thaxton, V. P. Dravid, ACS Nano 13 (2019) 10301-10311 https://doi.org/10.1021/acsnano.9b03727
[39] J.-H. Lee, K.-J. Chen, S.-H. Noh, M. A. Garcia, H. Wang, W.-Y. Lin, H. Jeong, B. J. Kong, D. B. Stout, J. Cheon, H.-R. Tseng, Angew. Chem. Int. Ed. 52 (2013) 4384-4388 https://doi.org/10.1002/anie.201207721
[40] M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, S. Khizroev, Nature Commun. 4 (2013) 1707 https://doi.org/10.1038/ncomms2717
[41] R. A. Revia, M. Zhang, Mater. Today, 19 (2016) 157-168 https://doi.org/10.1016/j.mattod.2015.08.022
[42] C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, Y. Y. Chen, Biomater. 31 (2010) 4104-4112 https://doi.org/10.1016/j.biomaterials.2010.01.140
[43] C. W. Ng, J. Li, K. Pu, Adv. Funct. Mater. 28 (2018) 1804688 https://doi.org/10.1002/adfm.201804688
[44] J. Estelrich, M. A. Busquets, Molecules 23 (2018) 1567 https://doi.org/10.3390/molecules23071567
[45] G.-T. Yu, L. Rao, H. Wu, L.-L. Yang, L.-L. Bu, W.-W. Deng, L. Wu, X. Nan, W.-F. Zhang, X.-Z. Zhao, W. Liu, Z.-J. Sun, Adv. Funct. Mater. 28 (2018) 1801389 https://doi.org/10.1002/adfm.201801389
[46] J. Wang, Z. G. Zhou, L. Wang, J. Wei, H. Yang, S. P. Yang, J. M. Zhao, RSC Adv. 5 (2015) 7349-7355 https://doi.org/10.1039/C4RA12733A
[47] D. K. Chatterjee, L. S. Fong, Y. Zhang, Adv. Drug Deliv. Rev. 60 (2008) 1627-37 https://doi.org/10.1016/j.addr.2008.08.003
[48] A. B. Seabra, Iron Oxide Magnetic Nanoparticles in Photodynamic Therapy: A Promising Approach Against Tumor Cells. In: M. Rai, R. Shegokar (eds), Metal Nanoparticles in Pharma., Springer, Cham (2017) https://doi.org/10.1007/978-3-319-63790-7_1
[49] Z-L. Chen, Y. Sun, P. Huang, X-X. Yang, X.-P. Zhou, Nanoscale Res. Lett. 4 (2009) 400-408 https://doi.org/10.1007/s11671-009-9254-5
[50] J. Cheng, G. Tan, W. Li, J. Li, Z. Wang, Y. Jin, RSC Adv. 6 (2016) 37610-37620 https://doi.org/10.1039/C6RA03128E
[51] H. Chen, F. Liu, Z. Lei, L. Ma, Z. Wang, RSC Adv. 5 (2015) 84980-84987 https://doi.org/10.1039/C5RA17143A
[52] R. Di Corato, G. Béalle, J. Kolosnjaj-Tabi, A. Espinosa, O. Clément, A. K. A. Silva, C. Ménager, C. Wilhelm, ACS Nano 9 (2015) 2904-2916 https://doi.org/10.1021/nn506949t
[53] M. Wang, Z. Hou, A. A. Al Kheraif, B. Xing, J. Lin, Adv. Healthcare Mater. 7 (2018) 1800351 https://doi.org/10.1002/adhm.201800351
[54] A. Quarta, C. Piccirillo, G. Mandriota, R. Di Corato, Materials 12 (2019) 139 https://doi.org/10.3390/ma12010139
[55] M. Bañobre-López, Y. Piñeiro-Redondo, M. Sandri, A. Tampieri, R. De Santis, V. A. Dediu, J. Rivas, IEEE Trans. Mag. 50 (2014) 5400507 https://doi.org/10.1109/TMAG.2014.2327245
[56] S. Mondal, P. Manivasagan, S. Bharathiraja, M. Santha Moorthy, V. T. Nguyen, H. H. Kim, Y. Nam, K. D. Lee, J. Oh, Nanomaterials 7 (2017) 426 https://doi.org/10.3390/nano7120426
[57] A. Najafinezhad, M. Abdellahi, S. Saber-Samandari, H. Ghayour, A. Khandan, J. Alloys Comp. 734 (2018) 290-300 https://doi.org/10.1016/j.jallcom.2017.10.138
[58] W. Leenakul, P. Intawin, J. Ruangsuriya, P. Jantaratana, K. Pengpat, Integrated Ferroelectrics 148 (2013) 81-89 https://doi.org/10.1080/10584587.2013.852034
[59] S. Khizar, N. M. Ahmad, N. Zine, N. Jaffrezic-Renault, A. Errachid-el-salhi, A. Elaissari, ACS Appl. Nano Mater. 4 (2021) 4284−4306 https://doi.org/10.1021/acsanm.1c00852
[60] V. F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros-Mendez, Adv. Healthcare Mater. 7 (2018) 1700845 https://doi.org/10.1002/adhm.201700845
[61] D. Yoo, J. H. Lee, T. H. Shin, J. Cheon, Acc. Chem. Res. 44 (2011) 863 https://doi.org/10.1021/ar200085c
[62] J. T. Jang, H. Nah, J. H. Lee, S. H. Moon, M. G. Kim, J. Cheon, Angew. Chem. Int. Ed. 48 (2009) 1234 https://doi.org/10.1002/anie.200805149
[63] J. S. Choi, J. H. Lee, T. H. Shin, H. T. Song, E. Y. Kim, J. Cheon, J. Am. Chem. Soc. 132 (2010) 11015 https://doi.org/10.1021/ja104503g
[64] Y. Li, K. Hu, B. Chen, Y. Liang, F. Fan, J. Sun, Y. Zhang, N. Gu, Colloids Surf. A 520 (2017) 348 https://doi.org/10.1016/j.colsurfa.2017.01.073
[65] C. Sanson, O. Diou, J. Thévenot, E. Ibarboure, A. Soum, A. Brûlet, S. Miraux, E. Thiaudière, S. Tan, A. Brisson, V. Dupuis, O. Sandre, S. Lecommandoux, ACS Nano 5 (2011) 1122-1140 https://doi.org/10.1021/nn102762f
[66] U. H. Sk, C. Kojima, Biomolecular Concepts 6 (2015) 205-217 https://doi.org/10.1515/bmc-2015-0012
[67] M. Xu, L. Zhou, L. Zheng, Q. Zhou, K. Liu, Y. Mao, S. Song, Cancer Lett. 497 (2021) 229-242 https://doi.org/10.1016/j.canlet.2020.10.037
[68] W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin, W. Ren, C. Liu, L. Guo, Y. Zhang, L. Sun, K. Zhang, H. Xu, Y. Chen, Nat. Commun. 10 (2019) 2025 https://doi.org/10.1038/s41467-019-09760-3