Applications of Magnetic Oxide Nanoparticles in Hyperthermia


Applications of Magnetic Oxide Nanoparticles in Hyperthermia

Robert C. Pullar

Magnetic oxide nanoparticles (NPs) are probably the most common nanomaterials in everyday biomedicine, and have been in use since the 1990’s. They are usually magnetic iron oxide NPs, made of magnetite (Fe3O4) or maghemite (γ-Fe2O3), or a mixture of the two. Both of these have the spinel structure, and other spinel ferrites such as ZnFe2O4, CoFe2O4 and NiFe2O4 are also used. For applications in magnetic hyperthermia these NPs must be below the magnetic domain size, making them superparamagnetic, which means that their magnetisation can be “switched on” by the application of an external magnetic field. Magnetic hyperthermia treatment is a form of thermotherapy which is used to kill tumour cells with thermal energy (heat) in a very localised manner, by causing magnetic oxide NPs to heat up near tumour cells. Under an applied AC magnetic field the magnetic spin of the NPs switches rapidly in direction, transforming the magnetic energy into thermal energy. Temperatures of 41-46 °C are sufficient, this localised heating elevating the temperature of tumour cells, inhibiting growth, killing them, or inducing tumour cell apoptosis. Magnetic NPs were first used in tumour thermotherapy in 1996, and since then there has been a great deal of research in this field. The treatment can be applied alone, or used in combination with other therapies such as surgery, radiotherapy and chemotherapy, and it has shown excellent synergistic effects in combination with anticancer drugs (chemotherapeutics).

Magnetic Oxide Nano Particles, Spinel Structure, Cobalt Ferrite, Hyperthemia Application

Published online , 26 pages

Citation: Robert C. Pullar, Applications of Magnetic Oxide Nanoparticles in Hyperthermia, Materials Research Foundations, Vol. 143, pp 76-101, 2023


Part of the book on Magnetic Nanoparticles for Biomedical Applications

[1] P. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance, Nature 242 (1973) 190-191
[2] R. Damadian, M. Goldsmith, L. Minkoff, NMR in cancer XVI: FONAR image of the live human body, Physiol. Chem. Physics 9 (1977) 97-100
[3] A. Seko, K. Yuge, F. Oba, A. Kuwabara, I. Tanaka, Phys. Rev. B 73 (2006) 184117
[4] X. Zeng, J. Zhang, S. Zhu, X. Deng, H. Ma, J. Zhang, Q. Zhang, P. Li, D. Xue, N. J. Mellors, X. Zhang, Y. Peng, Nanoscale 9 (2017) 7493-7500
[6] Z. Liad, C. Chanéac, G. Berger, S. Delaunay, A. Graffd, G. Lefèvre, RSC Adv. 9 (2019) 33633-33642
[7] Z. Hedayatnasab, F. Abnisa , W. M. A. W. Daud, Mater. Design 123 (2017) 174-196
[8] V. V. Mody, A. Singh, B. Wesley, Euro. J. Nanomed. 5 (2013) 11-21
[9] M. Rajendran, R. C. Pullar, A. K. Bhattacharya, D. Das, S. N. Chintalapudi, C. K. Majumdar, J. Magn. Mag. Mater. 232 (2001) 71-83
[10] D. B. Reeves, J. B. Weaver, Crit. Rev. Biomed. Eng. 42 (2014) 85-93
[11] M. R. Horsman, J. Overgard, Clin. Oncol. 19 (2007) 418
[12] R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, C.B. Taylor, Ann. Surg. 146 (1957) 596-606
[13] L. Roizin-Towle, J. P. Pirro, Int. J. Radiat. Oncol. Biol. Phys. 20 (1991) 751
[14] A. Jordan, P. Wust, R. Scholz, B. Tesche, H. Fähling, T. Mitrovics, T. Vogl, J. Cervós-Navarro, R. Felix, Int. J. Hyperthermia 12 (1996) 705
[15] K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, C. Hadjipanayis, Int. J. Hyperthermia -34 (2018) 1316
[16] M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldöfner, R. Scholz, S. Deger, P. Wust, S. A. Loening, and A. Jordan, Int. J. Hyperthermia. 21 (2005) 637-47
[17] F. Brero, M. Albino, A. Antoccia, P. Arosio, M. Avolio, F. Berardinelli, D. Bettega, P. Calzolari, M. Ciocca, M. Corti, A. Facoetti, S. Gallo, F. Groppi, A. Guerrini, C. Innocenti, C. Lenardi, S. Locarno, S. Manenti, R. Marchesini, M. Mariani, F. Orsini, E. Pignoli, C. Sangregorio, I. Veronese, A. Lascialfari, Nanomaterials 10 (2020) 1
[18] P. Moroz, S. K. Jones, B. N. Gray, Int. J. Hyperthermia 18 (2002) 267
[19] A. J. Giustini, A. A. Petryk, S. M. Cassim, J. A. Tate, I. Baker, P. J. Hoopes, Nano LIFE 1 (2010) 17-32
[20] I. Hilger, Int. J. Hyperthermia 29 (2013) 828
[21] I. Belyanina, O. Kolovskaya, S. Zamay, A. Gargaun, T. Zamay, A. Kichkailo, Molecules 22 (2017) 975
[22] K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, J. Neuro-Oncology 103 (2011) 317
[23] N. R. Datta, S. Krishnan, D. E. Speiser, E. Neufeld, N. Kuster, S. Bodis, H. Hofmann, Cancer Treatment Reviews 50 (2016) 217-227
[24] M. A. Gonzalez-Fernandez, T. E. Torres, M. Andrés-Vergés, R. Costo, P. de la Presa, C. J. Serna, M. P. Morales, C. Marquina, M. R. Ibarra, G. F. Goya, J. Solid State Chem. 182 (2009) 2779-2784
[25] A. Sathya, P. Guardia, R. Brescia, N. Silvestri, G. Pugliese, S. Nitti, L. Manna, T. Pellegrino, Chem. Mater. 28 (2016) 1769-1780
[26] P. B. Shete, R. M. Patil, N. D. Thorat, A. Prasad, R. S. Ningthoujam, S. J. Ghosh, S. H. Pawar, Appl. Surf. Sci. 288 (2014) 149-157
[27] P. Veverka, E. Pollert, K. Zaveta, S. Vasseur, E. Duguet, Nanotechnology 19 (2008) 215705
[28] E. Pollert, P. Veverka, M. Veverka, O. Kaman, K. Zaveta, S. Vasseur, R. Epherre, G. Goglio, E. Duguet, Prog. Solid State Chem. 37 (2009) 1-14
[29] A. U. Rashid, P. Southern, J. A. Darr, S. Awan, S. Manzoor, J. Magn. Mag. Mater. 344 (2013) 134-139
[30] M. Abdellahi, A. Najfinezhad, S. Saber-Samanadari, A. Khandan, H. Ghayoura, Chin. J. Phys. 56 (2018) 331-339
[31] K. M. Krishnan, IEEE Trans Magn. 46 (2010) 2523-2558
[32] X. L. Liu, C. T. Ng, P. Chandrasekharan, H. T. Yang, L. Y. Zhao, E. Peng, Y. B. Lv, W. Xiao, J. Fang, J. B. Yi, H. Zhang, K. H. Chuang, B. H. Bay, J. Ding, H. M. Fan, Adv. Healthcare Mater. 5 (2016) 2092
[33] Y. Li, X. Liu, X. Zhang, W. Pan, N. Li, B. Tang, Chem. Commun. 57 (2021) 12087-12097
[34] M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi, Jpn. J. Cancer Res. 89 (1998) 775-782
[35] J. Huang, Y. Li, A. Orza, Q. Lu, P. Guo, L. Wang, L. Yang, H. Mao, Adv. Funct. Mater. 26 (2016) 3818
[36] J. Pan, P. Hu, Y. Guo, J. Hao, D. Ni, Y. Xu, Q. Bao, H. Yao, C. Wei, Q. Wu, J. Shi, ACS Nano 14 (2020) 1033-1044
[37] X. Liu, J. Zheng, W. Sun, X. Zhao, Y. Li, N. Gong, Y. Wang, X. Ma, T. Zhang, L. Y. Zhao, Y. Hou, Z. Wu, Y. Du, H. Fan, J. Tian, X. J. Liang, ACS Nano 13 (2019) 8811-8825
[38] A. Singh, V. Nandwana, J. S. Rink, S. R. Ryoo, T. H. Chen, S. D. Allen, E. A. Scott, L. I. Gordon, C. S. Thaxton, V. P. Dravid, ACS Nano 13 (2019) 10301-10311
[39] J.-H. Lee, K.-J. Chen, S.-H. Noh, M. A. Garcia, H. Wang, W.-Y. Lin, H. Jeong, B. J. Kong, D. B. Stout, J. Cheon, H.-R. Tseng, Angew. Chem. Int. Ed. 52 (2013) 4384-4388
[40] M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, S. Khizroev, Nature Commun. 4 (2013) 1707
[41] R. A. Revia, M. Zhang, Mater. Today, 19 (2016) 157-168
[42] C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, Y. Y. Chen, Biomater. 31 (2010) 4104-4112
[43] C. W. Ng, J. Li, K. Pu, Adv. Funct. Mater. 28 (2018) 1804688
[44] J. Estelrich, M. A. Busquets, Molecules 23 (2018) 1567
[45] G.-T. Yu, L. Rao, H. Wu, L.-L. Yang, L.-L. Bu, W.-W. Deng, L. Wu, X. Nan, W.-F. Zhang, X.-Z. Zhao, W. Liu, Z.-J. Sun, Adv. Funct. Mater. 28 (2018) 1801389
[46] J. Wang, Z. G. Zhou, L. Wang, J. Wei, H. Yang, S. P. Yang, J. M. Zhao, RSC Adv. 5 (2015) 7349-7355
[47] D. K. Chatterjee, L. S. Fong, Y. Zhang, Adv. Drug Deliv. Rev. 60 (2008) 1627-37
[48] A. B. Seabra, Iron Oxide Magnetic Nanoparticles in Photodynamic Therapy: A Promising Approach Against Tumor Cells. In: M. Rai, R. Shegokar (eds), Metal Nanoparticles in Pharma., Springer, Cham (2017)
[49] Z-L. Chen, Y. Sun, P. Huang, X-X. Yang, X.-P. Zhou, Nanoscale Res. Lett. 4 (2009) 400-408
[50] J. Cheng, G. Tan, W. Li, J. Li, Z. Wang, Y. Jin, RSC Adv. 6 (2016) 37610-37620
[51] H. Chen, F. Liu, Z. Lei, L. Ma, Z. Wang, RSC Adv. 5 (2015) 84980-84987
[52] R. Di Corato, G. Béalle, J. Kolosnjaj-Tabi, A. Espinosa, O. Clément, A. K. A. Silva, C. Ménager, C. Wilhelm, ACS Nano 9 (2015) 2904-2916
[53] M. Wang, Z. Hou, A. A. Al Kheraif, B. Xing, J. Lin, Adv. Healthcare Mater. 7 (2018) 1800351
[54] A. Quarta, C. Piccirillo, G. Mandriota, R. Di Corato, Materials 12 (2019) 139
[55] M. Bañobre-López, Y. Piñeiro-Redondo, M. Sandri, A. Tampieri, R. De Santis, V. A. Dediu, J. Rivas, IEEE Trans. Mag. 50 (2014) 5400507
[56] S. Mondal, P. Manivasagan, S. Bharathiraja, M. Santha Moorthy, V. T. Nguyen, H. H. Kim, Y. Nam, K. D. Lee, J. Oh, Nanomaterials 7 (2017) 426
[57] A. Najafinezhad, M. Abdellahi, S. Saber-Samandari, H. Ghayour, A. Khandan, J. Alloys Comp. 734 (2018) 290-300
[58] W. Leenakul, P. Intawin, J. Ruangsuriya, P. Jantaratana, K. Pengpat, Integrated Ferroelectrics 148 (2013) 81-89
[59] S. Khizar, N. M. Ahmad, N. Zine, N. Jaffrezic-Renault, A. Errachid-el-salhi, A. Elaissari, ACS Appl. Nano Mater. 4 (2021) 4284−4306
[60] V. F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros-Mendez, Adv. Healthcare Mater. 7 (2018) 1700845
[61] D. Yoo, J. H. Lee, T. H. Shin, J. Cheon, Acc. Chem. Res. 44 (2011) 863
[62] J. T. Jang, H. Nah, J. H. Lee, S. H. Moon, M. G. Kim, J. Cheon, Angew. Chem. Int. Ed. 48 (2009) 1234
[63] J. S. Choi, J. H. Lee, T. H. Shin, H. T. Song, E. Y. Kim, J. Cheon, J. Am. Chem. Soc. 132 (2010) 11015
[64] Y. Li, K. Hu, B. Chen, Y. Liang, F. Fan, J. Sun, Y. Zhang, N. Gu, Colloids Surf. A 520 (2017) 348
[65] C. Sanson, O. Diou, J. Thévenot, E. Ibarboure, A. Soum, A. Brûlet, S. Miraux, E. Thiaudière, S. Tan, A. Brisson, V. Dupuis, O. Sandre, S. Lecommandoux, ACS Nano 5 (2011) 1122-1140
[66] U. H. Sk, C. Kojima, Biomolecular Concepts 6 (2015) 205-217
[67] M. Xu, L. Zhou, L. Zheng, Q. Zhou, K. Liu, Y. Mao, S. Song, Cancer Lett. 497 (2021) 229-242
[68] W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin, W. Ren, C. Liu, L. Guo, Y. Zhang, L. Sun, K. Zhang, H. Xu, Y. Chen, Nat. Commun. 10 (2019) 2025