Applications of Hard Ferrites in Memory Devices

$30.00

Applications of Hard Ferrites in Memory Devices

Ritesh Verma, Ankush Chauhan, Rajesh Kumar

Ferrites are the important material for memory devices. In this we discuss the ferrites in detail with their classification, preparation method to their applications. We also present a brief introduction about hard ferrites and their application in memory devices. Ferrites are the materials that offer distinct electrical and magnetic features that are helpful for various applications. It is noted that spin transmission torques may change magnetization through the current travelling through a magnetic tunnel interface, an effect followed by the spin transfer torque magnet random access memory as the switching mechanism. Also, it is observed that the transistor-type memory devices that employ nanostructured materials as loading sites for the trap are nano-floatting Gate (NFGM). Thus, this chapter presents a way forward for the memory devices.

Keywords
Ferrites, EMI Shielding, Spin Transmission, Magnetization, Nano-Floating Gate

Published online 2/1/2023, 22 pages

Citation: Ritesh Verma, Ankush Chauhan, Rajesh Kumar, Applications of Hard Ferrites in Memory Devices, Materials Research Foundations, Vol. 142, pp 185-206, 2023

DOI: https://doi.org/10.21741/9781644902318-7

Part of the book on An Introduction to Hard Ferrites

References
[1] W. H. Bragg, The structure of the spinel group of crystals, Phil. Magz. 30 (1915) 305-315. https://doi.org/10.1080/14786440808635400
[2] R. Valenzuela, Novel Applications of ferrites, Phys. Res. Int. (2012) 1-9. https://doi.org/10.1155/2012/591839
[3] F. Bertaut, F. Forrat, Structure des ferrites ferrimagnetiques des terres rares, Compt. Ren. de l’Acad. des Sci. 242 (1956) 382-384.
[4] S. Geller M. A. Gilleo, The crystal strutucre and ferromagnetism of Yttrium-iron garnet Y3Fe2(FeO4)5, J. Phys. Chem. Solids. 3 (1957) 30-36. https://doi.org/10.1016/0022-3697(57)90044-6
[5] A.K.Singh,M.G.H.Zaidi,P. L. Sah, R. Saxena, A Review on Classification of Various Ferrite Particles on the Basis of Crystal Structure, Eur. J, Adv. Eng. Tech.5 (2018)350-354.
[6] R. Verma, A. Chauhan, K. M. Batoo, R. Jasrotia, A. Sharma, R. Kumar, M. Hadi, E. H. Raslan, J. P. Labis, A. Imran, Review-Modulation of Dielectric, Ferroelectric and Piezoelectric properties of Lead-free BCZT ceramics by doping, ECS J. Solid State Sci. Tech. 10 (2021) 073004. https://doi.org/10.1149/2162-8777/ac0e0d
[7] G. Albanese, M. Carbucicchio, A. Deriu. Substitution of Fe3+ by Al3+ in the trigonal sies of M-type hexagonal ferrites, Il Nuovo Cimen. B. 15 (1975) 147-158. https://doi.org/10.1007/BF02894778
[8] C. De J. Fernandez, C. Sangregorio, J. De la Figuera, B. Belec, D. Makovec, A. Quesada. Progress and prospects of hard hexaferrites for permanent magnet, J. Phys. D: Appl. Phys. 54 (2021) 153001. https://doi.org/10.1088/1361-6463/abd272
[9] M. Abe, Y. Kitanoto, K. Matsumoto, M. Zhang, P. Li. Ultrasound enhanced ferrite plating bringing breakthrough in ferrite coating synthesised from aqueous solution, IEEE Trans. Magn. 3 (1997) 3649-3651. https://doi.org/10.1109/20.619526
[10] J. J. Cuomo, R. J. Gambino, J. M. E. Harper, J. D. Kuptsis, J. C. Webber, Significance of negative ion formation in sputtering and sims analysis. J Vac. Sci. Tech. 15 (1978) 281-287. https://doi.org/10.1116/1.569571
[11] D. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min-Lee, W. L. Melean, M. Croft, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material, Appl. Phys. Lett. 51 (1987) 619. https://doi.org/10.1063/1.98366
[12] D. M. Lind, S. D. Berry, G. Chern, H. Mathias, L. R. Testardi, Growth and structural characterization of Fe3O4 and NiO thin films and superlattices grown by oxygen plasma as sintered molecular beam epitaxy. Phys. Rev. B. 45 (1992) 1838-1850. https://doi.org/10.1103/PhysRevB.45.1838
[13] Y. Suzuki, R. B. Van Dover, E. M. Gyorgy, J. M. Phillips, R. J. Felder, Exchange coupling in single-crystalline spinel structure (Mn,Zn)Fe2O4/CoFe2O4 bilayers. Phys. Rev. B.53 (1996) 14016-14019. https://doi.org/10.1103/PhysRevB.53.14016
[14] J. M. Yang, W. J. Tsuo, F. S. Yen, Preparation of ultrafine nickel ferrite powders using mixed Ni and Fe tartrates, J. Solid State Chem. 145 (1999) 50-57. https://doi.org/10.1006/jssc.1999.8215
[15] J. Zhou, J. Ma, C. Sun. Low-temperature synthesis of NiFe2O4 by a hydrothermal method. J. Am. Ceram. Soc. 88 (2005) 3535-3537. https://doi.org/10.1111/j.1551-2916.2005.00629.x
[16] K. V. P. M. Shafi, Y. Koltypin, A. Gedanken, Sonochemical preparation of nanosized amorphous NiFe2O4 particles, J. Phys. Chem. B. 101 (1997) 6409- 6414. https://doi.org/10.1021/jp970893q
[17] S. Prasad, N. S. Gajbhiye, Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique, J. Alloy. Compd. 265 (1998) 87-92. https://doi.org/10.1016/S0925-8388(97)00431-3
[18] D. -H. Chen, X. -R. He, Synthesis of nickel ferrite nanoparticles by sol-gel method, Mater. Res. Bull. 36 (2001) 1369-1377. https://doi.org/10.1016/S0025-5408(01)00620-1
[19] Y. Shi, J. Ding, X. Liu, J. Wang, NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying, J. Mag. Mag. Matr. 205 (1999) 249- 254. https://doi.org/10.1016/S0304-8853(99)00504-1
[20] A. Kale, S. Gubbala, R. D. K. Misra, Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique, J. Mag. Mag. Matr. 277 (2004) 350-358. https://doi.org/10.1016/j.jmmm.2003.11.015
[21] Z. Beji, T. Ben Chaabane, L. S. Smiri, Synthesis of nickelzinc ferrite nanoparticles in polyol: morphological, structural and magnetic studies, Phys. Stat. Solidi A. 203 (2006) 504-512. https://doi.org/10.1002/pssa.200521454
[22] S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white, Scripta Matr.56 (2007) 797-800. https://doi.org/10.1016/j.scriptamat.2006.09.033
[23] H. Stäblein, Hard ferrites and plastoferrites, In: Wohlfarth.7 (1982) 441-602. https://doi.org/10.1016/S1574-9304(05)80093-8
[24] C. Yang, F. Liu, T. Ren, Fully integrated ferrite-based inductors for RF Ics. Sens. Acrt. A. 130-131 (2006) 365-370. https://doi.org/10.1016/j.sna.2005.10.024
[25] A. Verma, M. I. Alam, R. Chatterjee, T. C. Goel, R. G. Mendiratta, Development of a new soft ferrite core for power applications, J. Mag. Mag. Matr.300 (2006) 500-505. https://doi.org/10.1016/j.jmmm.2005.05.040
[26] G. Stojanovic, M. Damnjanovic, V. Desnica, High-performance zig-zag and meander inductors embedded in ferrite material, J. Mag. Mag. Matr.297 (2006) 76-83. https://doi.org/10.1016/j.jmmm.2005.02.058
[27] Y. B. Feng, T. Qiu, C. Y. Shen, X. -Y. Li, Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials, IEEE Trans. Magn. 42 (2006) 363-368. https://doi.org/10.1109/TMAG.2005.862763
[28] B. W. Li, Y. Shen, Z.-X. Yue, C.-W. Nan, Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites, Appl. Phys. Lett. 89 (2006) 132504. https://doi.org/10.1063/1.2357565
[29]R. C. Che, C. Y. Zhi, C. Y. Liang, X. G. Zhou, Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite, Appl. Phys. Lett.88 (2006) 1-3. https://doi.org/10.1063/1.2165276
[30]C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, J. Guo, Microwave attenuation of multiwalled carbon nanotube-fused silica composites, Appl. Phys. Lett.87 (2005) 1-3. https://doi.org/10.1063/1.2051806
[31]. J. H. Jhung, S. Kim, H. Kim, J. Park, J. H. Oh, High performance flexible organic nano-floating gate memory devices functionalised with cobalt ferrite nanoparticles, Small 11 (2015) 4976-4984. https://doi.org/10.1002/smll.201501382
[32] B. Baek, W. H. Rippard, S. P. Benz, S. E. Russek, P. D. Dresselhaus, Hybrid superconducting magnetic memory device using competing order parameters, Nat. Comm. 5 (2014) 3888. https://doi.org/10.1038/ncomms4888
[33] A. V. Limel, M. Li, Writing magnetic memory with ultrashort light pulses, Nat. Rev. Matr. 4 (2019) 189-200. https://doi.org/10.1038/s41578-019-0086-3
[34] Q. Wang, J. Domann, G. Yu, A. Barra, L. Wang G. P. Caman, Strain-Mediated Spin-Orbit-Torque Switching for Magnetic Memory, Phys.Rev. Appl. 10 (2018) 034052. https://doi.org/10.1103/PhysRevApplied.10.034052
[35] J. Zhang, S. Zhu, W. Xia, J. Ming, F. Li, J. Fu, Micromagnetic Configuration of Variable Nanostructured Cobalt Ferrite: Modulating and Simulations toward Memory Devices, ACS Appl. Mater. Interfaces 11 (2019) 28442-28448. https://doi.org/10.1021/acsami.9b07502
[36] V. Kumari, K. Dey, S. Giri, A. Bhaumik, Magnetic memory effect in self-assembly nickel ferrite nanoparticles having mesoscopic void spaces, RSC Adv. 6 (2016) 45701-45707. https://doi.org/10.1039/C6RA05483H
[37] A. Roy, R. Gupta, A. Garg, Multiferric magnetoelectric composites and their applications, Adv. Cond. Mater. Phys. (2012) 926290.
[38] J. Wu, Z. Shi, J. Xu, N. Li, Z. Zhang, H. Heng, Z. Xie, L. Zheng, Synthesis and room temperature four state memory prototype of Sr3Co2Fe24O41 multiferroics, Appl. Phys. Lett. 101 (2012) 122903. https://doi.org/10.1063/1.4753973
[39] O. Tizno, A. R. J. Mashall, N. F. Delgado, M. Herrera, S. I. Moling, M. Hayne, Room temperature operation of low voltage, non-volatile, compound semiconductor memory cells, Sci. Report 9 (2019) 8950. https://doi.org/10.1038/s41598-019-45370-1
[40] B. North, O. Nash, Magnetic core memory reborn, (2011).