Nanomaterials for Multifunctional Textiles

$30.00

Nanomaterials for Multifunctional Textiles

Kawser Parveen Chowdhury, Md. Abu Bin Hasan Susan, Saika Ahmed

The textile industry has been booming in recent decades due to new market explosion and consumer appeal for inventive apparel. Nanotechnology has played an exclusive role in such multifunctional high-performance textiles. Nanomaterials offer antimicrobial, flame retardance, self-cleaning, UV-protection, wrinkle-free, anti-static functionalities to textiles apart from their use for traditional aesthetic and decorative purposes. The nanoscale modified textiles offer new value-added functionalities while upgrading the existing aesthetic and physical properties. This chapter depicts an overall development on functional nanomaterials incorporated into textiles fabrics by different textile processes, featuring the aspects of nanotechnology to develop multifunctional textiles.

Keywords
Functional Nanomaterials, Textile Processes, Value-Added Functionalities, Upgradation of Physical Properties, Multifunctional Textiles

Published online 2/1/2023, 49 pages

Citation: Kawser Parveen Chowdhury, Md. Abu Bin Hasan Susan, Saika Ahmed, Nanomaterials for Multifunctional Textiles, Materials Research Foundations, Vol. 141, pp 169-217, 2023

DOI: https://doi.org/10.21741/9781644902295-8

Part of the book on Emerging Applications of Nanomaterials

References
[1] A.K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, M. Skorobogatiy, A. Khademhosseini, S.H. Yun, Nanotechnology in Textiles, ACS Nano. 10 (2016) 3042-3068. https://doi.org/10.1021/acsnano.5b08176
[2] A.P.S. Sawhney, B. Condon, K.V. Singh, S.S. Pang, G. Li, Modern applications of nanotechnology in textiles, Text. Res. J. 78 (2008) 731-739. https://doi.org/10.1177/0040517508091066
[3] R. Mishra, J. Militky, Nanotechnology in textiles: theory and application, 1st ed, Cambridge: Woodhead Publishing Ltd, Duxford, UK, 2019, pp. 102-245.
[4] S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain, A. Rehman, A. Javid, K. Iqbal, A. Basit, H. Aziz, Functional finishing and coloration of textiles with nanomaterials, Color. Technol. 134 (2018) 327-346. https://doi.org/10.1111/cote.12344
[5] M. Joshi, A. Bhattacharyya, Nanotechnology – a new route to high-performance functional textiles, Text. Prog. 43 (2011) 155-233. https://doi.org/10.1080/00405167.2011.570027
[6] B. Mahltig, H. Haufe, H. Böttcher, Functionalisation of textiles by inorganic sol-gel coatings. J. Mater. Chem. 15 (2005) 4385-4398. https://doi.org/10.1039/b505177k
[7] W.D. Schindler, P.J. Hauser, (Eds.) Chemical finishing of textiles. 1st ed. Cambridge: Woodhead Publishing Ltd and CRC Press LLC, England, 2004, pp. 18-182.
[8] M. Syduzzaman, S.U. Patwary, Smart textiles and nano-technology: a general overview, J. Text. Sci. Eng. 05 (2015) 1-7. https://doi.org/10.4172/2165-8064.1000181
[9] M. Shabbir, S. Ahmed, J.N. Sheikh, (Eds.) Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques, John Wiley & Sons and Scrivener Publishing LLC, USA, 2020, pp. 13-70. https://doi.org/10.1002/9781119620396
[10] International organization for standardization, 2008. Technical specification: Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticle, nanofiber and nanoplate, 2008, ISO/TS 80004-2.
[11] International organization for standardization, 2010. Nanotechnologies-vocabulary – Part 1: Core terms, 2010, ISO/TS 80004-1.
[12] R. Haggenmueller, C. Guthy, J.R. Lukes, J.E. Fischer, K.I. Winey, Single wall carbon nanotube/polyethylene nanocomposites: Thermal and electrical conductivity, Macromolecules. 40 (2007) 2417-2421. https://doi.org/10.1021/ma0615046
[13] J. Ren, W. Bai, G. Guan, Y. Zhang, H. Peng, Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber, Adv. Mater. 25 (2013) 5965-5970. https://doi.org/10.1002/adma.201302498
[14] S. Pan, H. Lin, J. Deng, P. Chen, X. Chen, Z. Yang, H. Peng, Novel wearable energy devices based on aligned carbon nanotube fiber textiles, Adv. Energy Mater. 5 (2015) 1401438. https://doi.org/10.1002/aenm.201401438
[15] D. Zhang, M. Miao, H. Niu, Z. Wei, Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles, ACS Nano. 8 (2014) 4571-4579. https://doi.org/10.1021/nn5001386
[16] A.D. Lueking, L. Pan, D.L. Narayanan, C.E. Clifford, Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage, J. Phys. Chem. B 109 (2005) 12710-12717. https://doi.org/10.1021/jp0512199
[17] C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y. Kim, Y. Kim, M. Endo, Fabrication of electrospinning‐derived carbon nanofiber webs for the anode material of lithium‐ion secondary batteries, Adv. Funct. Mater. 16 (2006) 2393-2397. https://doi.org/10.1002/adfm.200500911
[18] Y. Yu, Q. Yang, D. Teng, X. Yang, S. Ryu, Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries, Electrochem. Commun. 12 (2010) 1187-1190. https://doi.org/10.1016/j.elecom.2010.06.015
[19] X. Li, P. Sun, L. Fan, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, H. Zhu, Multifunctional graphene woven fabrics, Sci. Rep. 2 (2012) 395. https://doi.org/10.1038/srep00395
[20] M. Shateri-Khalilabad, M.E. Yazdanshenas, Fabricating electroconductive cotton textiles using graphene, Carbohydr. Polym. 96 (2013) 190-195. https://doi.org/10.1016/j.carbpol.2013.03.052
[21] M. Joshi, A. Bhattacharyya, N. Agarwal, S. Parmar, Nanostructured coatings for super hydrophobic textiles, Bull. Mater. Sci. 35 (2012) 933-938. https://doi.org/10.1007/s12034-012-0391-6
[22] P. Kiliaris, C.D. Papaspyrides, Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy, Prog. Polym. Sci. 35 (2010) 902-958. https://doi.org/10.1016/j.progpolymsci.2010.03.001
[23] G.V.R. Reddy, M. Joshi, B. Adak, B.L. Deopura, Studies on the dyeability and dyeing mechanism of polyurethane/clay nanocomposite filaments with acid, basic and reactive dyes, Color. Technol. 134 (2018) 117-125. https://doi.org/10.1111/cote.12332
[24] L. Tshniwal, Q. Fan, S.C. Ugbolue, Dyeable polypropylene fibers via nanotechnology, J. Appl. Polym. Sci. 106 (2007) 706-711. https://doi.org/10.1002/app.26719
[25] Y. Yu, X. Zhong, W. Gan, Conductive composites based on core-shell polyaniline nanoclay by latex blending, Colloid Polym. Sci. 287 (2009) 487-493. https://doi.org/10.1007/s00396-008-1989-5
[26] M. Esen, I. İlhan, M. Karaaslan, R. Esen, Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces, Appl. Nanosci. 10 (2020) 551-561. https://doi.org/10.1007/s13204-019-01122-1
[27] S.H. Jeong, S.Y. Yeo, S.C. Yi, The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers, J. Mater. Sci. 40 (2005) 5407-5411. https://doi.org/10.1007/s10853-005-4339-8
[28] H.J. Lee, S.Y. Yeo, S.H. Jeong, Antibacterial effect of nanosized silver colloidal solution on textile fabrics, J. Mater. Sci. 38 (2003) 2199-2204.
[29] H.Y. Ki, J.H. Kim, S.C. Kwon, S.H. Jeong, A study on multifunctional wool textiles treated with nano-sized silver, J. Mater. Sci. 42 (2007) 8020-8024. https://doi.org/10.1007/s10853-007-1572-3
[30] M.D. Teli, J. Sheikh, Modified bamboo rayon-copper nanoparticle composites as antibacterial textiles, Int. J. Biol. Macromol. 61 (2013) 302-307. https://doi.org/10.1016/j.ijbiomac.2013.07.015
[31] J.H. Xin, W.A. Daoud, Y.Y. Kong, A new approach to UV-blocking treatment for cotton fabrics, Text. Res. J. 74 (2004) 97-100. https://doi.org/10.1177/004051750407400202
[32] W. Duan, A. Xie, Y. Shen, X. Wang, F. Wang, Y. Zhang, J. Li, Fabrication of superhydrophobic cotton fabrics with UV protection based on CeO2 particles, Ind. Eng. Chem. Res. 50 (2011) 4441-4445. https://doi.org/10.1021/ie101924v
[33] S.W. Ali, S. Rajendran, M. Joshi, Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester, Carbohydr. Polym. 83 (2011) 438-446. https://doi.org/10.1016/j.carbpol.2010.08.004
[34] G. Laufer, C. Kirkland, A.B. Morgan, J.C. Grunlan, Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton, Biomacromolecules. 13 (2012) 2843-2848. https://doi.org/10.1021/bm300873b
[35] J.P. Chen, G.Y. Chang, J.K. Chen, Electrospun collagen/chitosan nanofibrous membrane as wound dressing, Colloids Surf. A: Physicochem. Eng. Asp. 313-314 (2008) 183-188. https://doi.org/10.1016/j.colsurfa.2007.04.129
[36] J. Alongi, G. Brancatelli, G. Rosace, Thermal properties and combustion behavior of POSS‐and bohemite‐finished cotton fabrics, J. Appl. Polym. Sci. 123 (2012) 426-436. https://doi.org/10.1002/app.34476
[37] S. Chen, X. Li, Y. Li, J. Sun, Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric, ACS Nano. 9 (2015) 4070-4076. https://doi.org/10.1021/acsnano.5b00121
[38] O. Baykuş, Ş.D. Dogan, U. Tayfun, A. Davulcu, M. Dogan, Improving the dyeability of poly (lactic acid) fiber using octa (aminophenyl) POSS nanoparticle during melt spinning, J. Text. Inst. 108 (2017) 569-578. https://doi.org/10.1080/00405000.2016.1175536
[39] A. Davulcu, M. Dogan, Production of dyeable polypropylene fiber using polyhedral oligomeric silsesquioxanes via melt spinning, Fibers Polym. 15 (2014) 2370-2375. https://doi.org/10.1007/s12221-014-2370-6
[40] K. Qi, X. Chen, Y. Liu, J.H. Xin, C.L. Mak, W.A. Daoud, Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles, J. Mater. Chem. 17 (2007) 3504-3508. https://doi.org/10.1039/b702887c
[41] E. Pakdel, W. Daoud, Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica, J. Colloid Interface Sci. 401 (2013) 1-7. https://doi.org/10.1016/j.jcis.2013.03.016
[42] M.J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, A. Zecchina, Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties, J. Photochem. Photobiol. A: Chem. 199 (2008) 64-72. https://doi.org/10.1016/j.jphotochem.2008.05.004
[43] L. Liu, L.H. Klausen, M. Dong, Two dimensional peptide based functional nanomaterials, Nano Today, 23 (2018) 40-58. https://doi.org/10.1016/j.nantod.2018.10.008
[44] M. Sathishkumar, S. Geethalakshmi, M. Saroja, M. Venkatachalam, P. Gowthaman, S.K. Verma, A.K. Das, Chapter Three – Antimicrobial activities of biosynthesized nanomaterials, Compr. Anal. Chem. 94 (2021) 81-172. https://doi.org/10.1016/bs.coac.2020.12.007
[45] A.D. Broadbent, An introduction to dyes and dyeing, Basic Principle of Textile Coloration, West Yorkshire: Society of Dyers and Colourists. 2001, pp. 174-180.
[46] I. Holme, Adhesion to textile fibres and fabrics, Int. J. Adhes. Adhes. 19 (1999) 455-463. https://doi.org/10.1016/S0143-7496(99)00025-1
[47] A.K.R. Choudhury, Introduction to finishing, in: Principles of Textile Finishing, Woodhead Publishing Series in Textiles. Woodhead Publishing Ltd, Duxford, 2017, pp. 1-19.
[48] M. Joshi, B.S. Butola, Application technologies for coating, lamination and finishing of technical textiles, in: M.L. Gulrajani, (Eds.), Advances in the Dyeing and Finishing of Technical Textiles, Woodhead Publishing Ltd, 2013, pp. 355-411. https://doi.org/10.1533/9780857097613.2.355
[49] W.S. Tung, W.A. Daoud, Self-cleaning fibers via nanotechnology: a virtual reality. J. Mater. Chem. 21 (2011) 7858-7869. https://doi.org/10.1039/c0jm03856c
[50] J.K. Patra, S. Gouda, Application of nano technology in textile engineering: An overview, J. Eng. Technol. Res. 5(5) (2013)104-111. https://doi.org/10.5897/JETR2013.0309
[51] R. Nayak, R. Padhye, I.L. Kyratzis, Y.B. Truong, L. Arnold, Recent advances in nanofibre fabrication techniques, Text. Res. J. 82 (2012) 129-147. https://doi.org/10.1177/0040517511424524
[52] S. Ramakrishna, K. Fujihara, W-E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: Solving global issues, Mater. Today, 9 (2006) 40-50. https://doi.org/10.1016/S1369-7021(06)71389-X
[53] P.S. Kumar, J. Sundaramurthy, S. Sundarrajan, V.J. Babu, G. Singh, S.I. Allakhverdiev, S. Ramakrishna, Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation, Energy Environ. Sci. 7 (2014) 3192-3222. https://doi.org/10.1039/C4EE00612G
[54] B. Ghorani, N. Tucker, Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology, Food Hydrocoll. 51 (2015) 227-240. https://doi.org/10.1016/j.foodhyd.2015.05.024
[55] K. Riazi, J. Kübel, M. Abbasi, K. Bachtin, S. Indris, H. Ehrenberg, R. Kádár, M. Wilhelm, Polystyrene comb architectures as model systems for the optimized solution electrospinning of branched polymers. Polymer, 104 (2016) 240-250. https://doi.org/10.1016/j.polymer.2016.05.032
[56] C-L. Zhang, S-H. Yu, Nanoparticles meet electrospinning: recent advances and future prospects, Chem. Soc. Rev. 43 (2014) 4423-4448. https://doi.org/10.1039/c3cs60426h
[57] U. Tayfun, M. Dogan, Improving the dyeability of poly (lactic acid) fiber using organoclay during melt spinning. Polym. Bull. 73 (2016) 1581-1593. https://doi.org/10.1007/s00289-015-1564-4
[58] J.K.W. Sandler, S. Pegel, M. Cadek, F. Gojny, M. van Es, J. Lohmar, W.J.; Blau, K. Schulte, A.H. Windle, M.S.P. Shaffer, A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibers, Polymer. 45 (2004) 2001-2015. https://doi.org/10.1016/j.polymer.2004.01.023
[59] J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding, Polymer. 42 (2001) 1083-1094. https://doi.org/10.1016/S0032-3861(00)00380-3
[60] Z. Zhou, L. Chu, W. Tang, L. Gu, Studies on the antistatic mechanism of tetrapod-shaped zinc oxide whisker, J Electrostat. 57 (2003) 347-354. https://doi.org/10.1016/S0304-3886(02)00171-7
[61] F. Zhang, J. Yang, Preparation of nano-ZnO and its application to the textile on antistatic finishing, Int. J Chem. 1 (2009) 18-22. https://doi.org/10.5539/ijc.v1n1p18
[62] T.W. Shyr, C.H. Lien, A.J. Lin, Coexisting antistatic and water-repellent properties of polyester fabric, Text. Res. J. 81 (2011) 254-263. https://doi.org/10.1177/0040517510380775
[63] M.K. Babu, K.B. Ravindra, Bioactive antimicrobial agents for finishing of textiles for health care products, J. Text. Inst. 106 (2014) 706-717. https://doi.org/10.1080/00405000.2014.936670
[64] R.B. Sadu, D.H. Chen, A.S. Kucknoor, Z. Guo, A.J. Gomes, Silver-doped TiO2/polyurethane nanocomposites for antibacterial textile coating, BioNanoSci. 4 (2014) 136-148. https://doi.org/10.1007/s12668-014-0125-x
[65] S. Islam, F. Mohammad, Natural colorants in the presence of anchors so-called mordants as promising coloring and antimicrobial agents for textile materials. ACS Sustain. Chem. Eng. 3 (2015) 2361-2375. https://doi.org/10.1021/acssuschemeng.5b00537
[66] Y. Gao, R. Cranston, Recent advances in antimicrobial treatments of textiles, Text. Res. J. 78 (2008) 60-72. https://doi.org/10.1177/0040517507082332
[67] B. Simoncic, B. Tomsic, Structures of novel antimicrobial agents for textiles – A review, Text. Res. J. 80 (2010) 1721-1737. https://doi.org/10.1177/0040517510363193
[68] K.S. Huang, C.-H. Yang, S.-L. Huang, C.-Y. Chen, Y.-Y. Lu, Y.-S. Lin, Recent advances in antimicrobial polymers, Int. J. Mol. Sci. 17 (2016) 1578. https://doi.org/10.3390/ijms17091578
[69] S. Islam, M. Shahid, F. Mohammad, Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers-A review. Ind. Eng. Chem. Res. 57 (2013) 5245-5260. https://doi.org/10.1021/ie303627x
[70] R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties, Colloids Surf. B biointerfaces, 79 (2010) 5-18. https://doi.org/10.1016/j.colsurfb.2010.03.029
[71] S. Josset, N. Keller, M.-C. Lett, M.J. Ledoux, V. Keller, Numeration methods fortargeting photoactive materials in the UV-A photocatalytic removal of microorganisms, Chem. Soc. Rev. 37 (2008) 744-755. https://doi.org/10.1039/b711748p
[72] G. Wyszogrodzka, B. Marszałek, B. Gil, P. Dorozy˙nski, Metal-organic frameworks: mechanisms of antibacterial action and potential applications, Drug Discov. Today. 21 (2016) 1009-1018. https://doi.org/10.1016/j.drudis.2016.04.009
[73] E.D. Cavassin, L.F.P. de Figueiredo, J.P. Otoch, M.M. Seckler, R.A. de Oliveira, F.F. Franco, V.S. Marangoni, V. Zucolotto, A.S.S. Levin, S.F. Costa, Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria, J. Nanobiotechnology, 13 (2015) 64. https://doi.org/10.1186/s12951-015-0120-6
[74] J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomaterialia. 4 (2008) 707-716. https://doi.org/10.1016/j.actbio.2007.11.006
[75] O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 4 (2010) 5731-5736. https://doi.org/10.1021/nn101390x
[76] T. Parandhaman, A. Das, B. Ramalingam, D. Samanta, T.P. Sastry, A.B. Mandal, S.K. Das, Antimicrobial behavior of biosynthesized silica-silver nanocomposite for water disinfection: A mechanistic perspective, J. Hazard. Mater. 290 (2015) 117-126. https://doi.org/10.1016/j.jhazmat.2015.02.061
[77] C. Gunawan, W.Y. Teoh, C.P. Marquis, R. Amal, Cytotoxic origin of copper (II) oxide nanoparticles: Comparative studies with micron-sized particles, leachate, and metal salts, ACS Nano, 5 (2011) 7214-7225. https://doi.org/10.1021/nn2020248
[78] S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng. C, 44 (2014) 278-284. https://doi.org/10.1016/j.msec.2014.08.031
[79] G. Zhao, S. E. Stevens Jr, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals. 11 (1998) 27-32. https://doi.org/10.1023/A:1009253223055
[80] S.T. Dubas, P. Kumlangdudsana, P. Potiyaraj, Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers, Colloids Surf. A Physicochem. Eng. Asp. 289 (2006) 105-109. https://doi.org/10.1016/j.colsurfa.2006.04.012
[81] S. Li, T. Zhu, J. Huang, Q. Guo, G. Chen, Y. Lai, Durable antibacterial and UV-protective Ag/TiO2@ fabrics for sustainable biomedical application, Int. J. Nanomedicine. 12 (2017) 2593-2606. https://doi.org/10.2147/IJN.S132035
[82] S. Zhang, Y.A. Tang, B. Vlaholic, A review on preparation and applications of silver-containing nanofibers, Nanoscale Res. Lett. 11 (2016) 80. https://doi.org/10.1186/s11671-016-1286-z
[83] M. Yu, Z. Wang, M. Lv, R. Hao, R. Zhao, L. Qi, S. Liu, C. Yu, B. Zhang, C. Fan, J. Li, Antisuperbug cotton fabric with excellent laundering durability, ACS Appl. Mater. Interfaces. 8 (2016) 19866-19871. https://doi.org/10.1021/acsami.6b07631
[84] M. Rana, B. Hao, L. Mu, L. Chen, P.C. Ma, Development of multi-functional cotton fabrics with Ag/AgBr-TiO2, Compos Sci Technol. 122 (2016) 104-112. https://doi.org/10.1016/j.compscitech.2015.11.016
[85] S. Eckhardt, P.S. Brunetto, J. Gagnon, M. Priebe, B. Giese, K.M. Fromm, Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine, Chem. Rev. 113 (2013) 4708-4754. https://doi.org/10.1021/cr300288v
[86] N. Čuk, M. Šala, M. Gorjanc, Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles, Cellulose, 28 (2021) 3215-3233. https://doi.org/10.1007/s10570-021-03715-y
[87] V. Babaahmadi, M. Montazer, A new route to synthesis silver nanoparticles on polyamide fabric using stannous chloride, J. Text. Inst. 106 (2015) 970-977. https://doi.org/10.1080/00405000.2014.957468
[88] V. Ilic, Z. Saponjic, V. Vodnik, et al., Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics, Ind. Eng. Chem. Res. 49 (2010) 7287-7293. https://doi.org/10.1021/ie1001313
[89] J.C. Flores-Arriaga, R. Garcıa-Contreras, G. Villanueva-Sa’nchez, et al., Antimicrobial poly (methyl methacrylate) with silver nanoparticles for dentistry: a systematic review, Appl. Sci. 10 (2020) 4007. https://doi.org/10.3390/app10114007
[90] W. Yunping, Y. Yan, Z. Zhijie, W. Zhihua, Z. Yanbao, S. Lei, Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles, Text. Res. J. 89 (2021) 867-880. https://doi.org/10.1177/0040517518758002
[91] C. Pereira, A.M. Pereira, C. Freire, T.V. Pinto, R.S. Costa, J.S. Teixeira, Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing, in: Handbook of functionalized nanomaterials for industrial applications, Elsevier, 2020, pp. 611-714. https://doi.org/10.1016/B978-0-12-816787-8.00021-1
[92] S.A. Jadhav, A.H. Patil, S.S. Thoravat, et al., A brief overview of antimicrobial nanotextiles prepared by in situ synthesis and deposition of silver nanoparticles on cotton, Nanotechnol. Russia. 16 (2021) 543-550. https://doi.org/10.1134/S2635167621040170
[93] T. Textor, M.M.G. Fouda, B. Mahltig, Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction, Appl. Surf. Sci. 256 (2010) 2337-2342. https://doi.org/10.1016/j.apsusc.2009.10.063
[94] M. Montazer, A. Shamei, F. Alimohammadi, Synthesis of nanosilver on polyamide fabric using silver/ammonia complex, Mater. Sci. Eng. C 38 (2020) 170-176. https://doi.org/10.1016/j.msec.2014.01.044
[95] M. Montazer, A. Shamei, F. Alimohammadi, Synthesizing and stabilizing silver nanoparticles on polyamide fabric using silver-ammonia/PVP/UVC, Prog. Org. Coat. 75 (2012) 379-385. https://doi.org/10.1016/j.porgcoat.2012.07.011
[96] V. Allahyarzadeh, M. Montazer, N.H. Nejad, et al., In situ synthesis of nano silver on polyester using NaOH/Nano TiO2, J. Appl. Polym. Sci. 129 (2013) 892-900. https://doi.org/10.1002/app.38907
[97] Z. Komeily-Nia, M. Montazer, M. Latifi, Synthesis of nano copper/nylon composite using ascorbic acid and CTAB, Colloids Surf. A Physicochem. Eng. Asp. 439 (2013) 167-175. https://doi.org/10.1016/j.colsurfa.2013.03.003
[98] M. Razmkhah, M. Montazer, A.B. Rezaie, M.M. Rad, Facile technique for wool coloration via locally forming of nano selenium photocatalyst imparting antibacterial and UV protection properties, J. Ind. Eng. Chem. 101 (2021) 153-164. https://doi.org/10.1016/j.jiec.2021.06.018
[99] A.B. Rezaie, M. Montazer, M.M. Rad, A cleaner route for nanocolouration of wool fabric via green assembling of cupric oxide nanoparticles along with antibacterial and UV protection properties, J. Clean. Prod. 166 (2017) 221-231. https://doi.org/10.1016/j.jclepro.2017.08.046
[100] M.E. El-Naggar, Th.I. Shaheen, S. Zaghloul, M.H. El-Rafie, A. Hebeish, Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics, Ind. Eng. Chem. Res. 55 (2016) 2661-2668. https://doi.org/10.1021/acs.iecr.5b04315
[101] R. Pandimurugan, S. Thambidurai, UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics, Int. J. Biol. Macromol. 105 (2017) 788-795. https://doi.org/10.1016/j.ijbiomac.2017.07.097
[102] N.F. Attia, M. Moussa, A.M.F. Sheta, R. Taha, H. Gamal, Synthesis of effective multifunctional textile based on silica nanoparticles, Prog. Org. Coat. 106 (2017) 41-49. https://doi.org/10.1016/j.porgcoat.2017.02.006
[103] B.A. Çakır, L. Leyla Budama, O. Topel, N. Hoda, Synthesis of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications, Colloids Surf. A Physicochem. Eng. Asp. 414 (2012) 132-139. https://doi.org/10.1016/j.colsurfa.2012.08.015
[104] M.Z. Khan, V. Baheti, M. Ashraf, T. Hussain, A. Ali, A. Javid, A. Rahman, Development of UV Protective, Superhydrophobic and Antibacterial Textiles Using ZnO and TiO2 Nanoparticles, Fibers Polym. 19 (2018) 1647-1654. https://doi.org/10.1007/s12221-018-7935-3
[105] A. Farouk, S. Moussa, M. Ulbricht, et al., ZnO-modified hybrid polymers as an antibacterial finish for textiles, Text. Res. J. 84 (2014) 40-51. https://doi.org/10.1177/0040517513485623
[106] M. Ibanescu, V. Musat, T. Textor, V. Badilita, B. Mahltig, Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics, J. Alloys Compd. 610 (2014) 244-249. https://doi.org/10.1016/j.jallcom.2014.04.138
[107] L. Xu, Y. Shen, L. Wang, Y. Ding, Z. Cai, Preparation of vinyl silicabased organic/inorganic nanocomposites and superhydrophobic polyester surfaces from it, Colloid Polym. Sci. 293 (2015) 2359-2371. https://doi.org/10.1007/s00396-015-3624-6
[108] Y. Shin, M. Park, H. Kim, F. Jin, S. Park, Synthesis of silver-doped silica complex nanoparticles for antibacterial materials. Bull. Korean Chem. Soc. 35 (2014) 2979-2984. https://doi.org/10.5012/bkcs.2014.35.10.2979
[109] S.W. Ali, M. Joshi, S. Rajendran, Novel, self-assembled antimicrobial textile coating containing chitosan nanoparticles, AATCC Rev. 11 (2011) 49-71.
[110] D. Mihailovic, Z. Saponjic, V. Vodnik, B. Pothonjak, P. Jovancic, J.M. Nedeljkovic, M. Radetic, Multifunctional PES fabrics modified with colloidal Ag and TiO2 nanoparticles, Polym. Adv. Technol. 22 (2011) 2244-2249. https://doi.org/10.1002/pat.1752
[111] A.P. Periyasamy, M. Venkataraman, D. Kremenakova, J. Militkyet, Y. Zhou, Progress in sol-gel technology for the coatings of fabrics, Materials, 13 (2020) 1838. https://doi.org/10.3390/ma13081838
[112] N. Radic, B.M. Obradovic, M. Kostic, B. Dojcinovic, M. Hudcova, M.M. Kuraica, M. Cernak, Deposition of gold nanoparticles on polypropylene nonwoven pretreated by dielectric barrier discharge and diffuse coplanar surface barrier discharge, Plasma Chem. Plasma Process. 33 (2013) 201-218. https://doi.org/10.1007/s11090-012-9414-8
[113] M.E. Ureyen, A. Dogan, A.S. Koparal, Antibacterial functionalization of cotton and polyester fabrics with a finishing agent based on silver-doped calcium phosphate powders, Text. Res. J. 8 (2012) 1731-1742. https://doi.org/10.1177/0040517512445331
[114] U. Manzoor, M. Islam, L. Tabassam, S. U. Rahman, Quantum confinement effect in ZnO nanoparticles synthesized by co-precipitate method, Physica E Low Dimens. Syst. Nanostruct. 41 (2009) 1669-1672. https://doi.org/10.1016/j.physe.2009.05.016
[115] A. Rahdar, M.R. Hajinezhad, V.S. Sivasankarapillai, F. Askari, M. Noura, G. Z. Kyzas, Synthesis, characterization and intraperitoneal biochemical studies of zinc oxide nanoparticles in Rattus norvegicus, Appl. Phys. A, 126 (2020) 1-9. https://doi.org/10.1007/s00339-020-03535-0
[116] S.A. Noorian, N. Hemmatinejad, J.A. Navarro, Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities, Int. J. Biol. Macromol. 154 (2020) 1215-1226. https://doi.org/10.1016/j.ijbiomac.2019.10.276
[117] N.R. Dhineshbabu, S. Bose, UV resistant and fire retardant properties in fabrics coated with polymer based nanocomposites derived from sustainable and natural resources for protective clothing application, Compos. B. Eng. 172 (2019) 555-563. https://doi.org/10.1016/j.compositesb.2019.05.013
[118] A. Sedighi, M. Montazer, S. Mazinani, Fabrication of electrically conductive superparamagnetic fabric with microwave attenuation, antibacterial properties and UV protection using PEDOT/magnetite nanoparticles, Mater. Des. 160 (2018) 34-47. https://doi.org/10.1016/j.matdes.2018.08.046
[119] A. Fouda, E.L. Saad, S.S. Salem, T.I. Shaheen, In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb. Pathog. 125 (2018) 252-261. https://doi.org/10.1016/j.micpath.2018.09.030
[120] A.H. Alrajhi, N.M. Ahmed, M. Al Shafouri, M.A. Almessiere, A.A.M. Ghamdi, Green synthesis of zinc oxide nanoparticles using salvia officials extract, Mater Sci Semicond Process., 125 (2021) 105641. https://doi.org/10.1016/j.mssp.2020.105641
[121] H.Y. Phin, Y.T. Ong, J.C. Sin, Effect of carbon nanotubes loading on the photocatalytic activity of zinc oxide/carbon nanotubes photocatalyst synthesized via a modified sol-gel method, J. Environ. Chem. Eng. 8 (2020) 103222. https://doi.org/10.1016/j.jece.2019.103222
[122] M.M. Rashid, B. Simončič, B. Tomšič, Recent advances in TiO2-functionalized textile surfaces, Surf. Interfaces. 22 (2021) 100890. https://doi.org/10.1016/j.surfin.2020.100890
[123] D. Grifoni, L. Bacci, G. Zipoli, L. Albanese, F. Sabatini, The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes Pigm. 91 (2011) 279-285. https://doi.org/10.1016/j.dyepig.2011.04.006
[124] J. Campos Payá, P. Diáz-Garciá, I. Montava, P. Miró-Martínez, M. Bonet, A new development for determining the ultraviolet protection factor, J. Ind. Text. 45 (2015) 1571-1586. https://doi.org/10.1177/1528083714567238
[125] A. Awad, A.I. Abou-Kandil, I. Elsabbagh, M. Elfass, M. Gaafar, E. Mwafy, Polymer nanocomposites part 1: Structural characterization of zinc oxide nanoparticles synthesized via novel calcination method, J. Thermoplast. Compos. Mater. 28 (2015) 1343-1358. https://doi.org/10.1177/0892705714551241
[126] S. Shahidi, Novel method for ultraviolet protection and flame retardancy of cotton fabrics by low-temperature plasma, Cellulose. 21 (2014) 757-768. https://doi.org/10.1007/s10570-013-0127-9
[127] P.D. Dubrovski, D. Golob, Effects of woven fabric construction and color on ultraviolet protection, Text. Res. J. 79 (2009) 351-359. https://doi.org/10.1177/0040517508090490
[128] W. Wong, J.K. Lam, C. Kan, R. Postle, Influence of knitted fabric construction on the ultraviolet protection factor of greige and bleached cotton fabrics, Text. Res. J. 83 (2013) 683-699. https://doi.org/10.1177/0040517512467078
[129] C.A. Wilson, N.K. Bevin, R.M. Laing, B.E. Niven, Solar protection- effect of selected fabric and use characteristics on ultraviolet transmission, Text. Res. J. 78 (2008) 95-104. https://doi.org/10.1177/0040517508089660
[130] B. Bulcha, J. Leta Tesfaye, D. Anatol, R. Shanmugam, L.P. Dwarampudi, N. Nagaprasad, V.L.N. Bhargavi, R. Krishnaraj, Synthesis of zinc oxide nanoparticles by hydrothermal methods and spectroscopic investigation of ultraviolet radiation protective properties, J. Nanomater. (2021) 8617290. https://doi.org/10.1155/2021/8617290
[131] D. Chen, L. Tan, H. Liu, J. Hu, Y. Li, F. Tang, Fabricating superhydrophilic wool fabrics, Langmuir, 26 (2010) 4675-4679. https://doi.org/10.1021/la903562h
[132] N.R. Dhineshbabu, S. Bose, Smart textiles coated with eco-friendly UV-blocking nanoparticles derived from natural resources, ACS Omega, 3 (2018) 7454-7465. https://doi.org/10.1021/acsomega.8b00822
[133] S. Dadvar, H. Tavanai, M. Morshed, UV-protection properties of electrospun polyacrylonitrile nanofibrous mats embedded with MgO and Al2O3 nanoparticles, J. Nanoparticle Res. 13 (2011) 5163. https://doi.org/10.1007/s11051-011-0499-4
[134] M. Shabbir, F. Mohammad, Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles, Appl. Nanosci. 8 (2018) 545-555. https://doi.org/10.1007/s13204-018-0668-1
[135] K. Jazbec, M. Sala, M. Mozetic, V. Alenka, G. Marija, Functionalization of cellulose fibres with oxygen plasma and ZnO nanoparticles for achieving UV protective properties, J. Nanomater. 16 (2015) 346739. https://doi.org/10.1155/2015/346739
[136] S. Lee, Developing UV-protective textiles based on electrospun zinc oxide nanocomposite fibers, Fibers Polym. 10 (2009) 295-301. https://doi.org/10.1007/s12221-009-0295-2
[137] M. Zhang, S. Feng, L. Wang, Y. Zheng, Lotus effect in wetting and self-cleaning, Biotribology, 5 (2016) 31-43. https://doi.org/10.1016/j.biotri.2015.08.002
[138] B. Adak, S. Mukhopadhyay, All-cellulose composite laminates with low moisture and water sensitivity, Polymer. 141 (2018) 79-85. https://doi.org/10.1016/j.polymer.2018.02.065
[139] Y.L. Zhang, H. Xia, E. Kim, H.B. Sun, Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter. 8 (2012) 11217-11231. https://doi.org/10.1039/c2sm26517f
[140] J. Yuan, J. Wang, K. Zhang, W. Hu, Fabrication and properties of a superhydrophobic film on an electroless plated magnesium alloy, RSC Adv. 7 (2017) 28909-28917. https://doi.org/10.1039/C7RA04387B
[141] S. Pal, S. Mondal, P. Pal, A. Das, J. Maity, Fabrication of Ag NPs/silane coated mechanical and washing durable hydrophobic cotton textile for self-cleaning and oil-water separation application, J. Indian Chem. Soc. 99 (2022) 100283. https://doi.org/10.1016/j.jics.2021.100283
[142] B. Ohtani, Y. Ogawa, S. Nishimoto, Photocatalytic activity of amorphous – anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions, J. Phys. Chem. B. 101 (1997) 3746-3752. https://doi.org/10.1021/jp962702+
[143] E. Pakdel, W.A. Daoud, R.J. Varley, X. Wang, Antibacterial textile and the effect of incident light wavelength on its photocatalytic self-cleaning activity, Mater. Lett. 318 (2022) 132223. https://doi.org/10.1016/j.matlet.2022.132223
[144] S. Lakshmi and R. Renganathan, S. Fujita, Study on TiO2-mediated photocatalytic degradation of methylene blue, J. Photochem. Photobiol. A Chem. 88 (1995) 163-167. https://doi.org/10.1016/1010-6030(94)04030-6
[145] A. Houas, H. Lachheb, M. Ksibi, M. Elaloui, C. Guillard, and I. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal B: Envir, 31 (2001) 145-157. https://doi.org/10.1016/S0926-3373(00)00276-9
[146] R. Shishoo, Recent developments in materials for use in protective clothing, Int. J. Cloth. Sci. Technol. 14 (2002) 201-215. https://doi.org/10.1108/09556220210437167
[147] J.K. Patra, S. Gouda, Application of nano technology in textile engineering: An overview, J. Eng. Technol. Res. 5 (2013) 104-111. https://doi.org/10.5897/JETR2013.0309
[148] M. Ashraf, P. Champagne, A. Perwuelz, C. Campagne, A. Leriche, Photocatalytic solution discoloration and self-cleaning by polyester fabric functionalized with ZnO nanorods, J. Ind. Text. 44 (2015) 884-898. https://doi.org/10.1177/1528083713519662
[149] H. Yaghoubi, N. Taghavinia, E.K. Alamdari, Self-cleaning TiO2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties, Surf. Coat. Technol. 204 (2010) 1562-1568. https://doi.org/10.1016/j.surfcoat.2009.09.085
[150] B.S. Kumar, Self-cleaning finish on cotton textile using sol-gel derived TiO2 nano finish, IOSR-JPTE, 2 (2015) 2348-0181.
[151] K. Meilert, D. Laun, J. Kiwi, Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers, J. Mol. Catal. A Chem. 237 (2005) 101-108. https://doi.org/10.1016/j.molcata.2005.03.040
[152] H.Y. Chien, H.W. Chen, C.C. Wang, The study of non-formaldehyde crease-resist finishing fabrics treated with the compound catalyst of nanometer grade TiO2 under UV light and different polycarboxylic acid, J. Hwa Gang Text. 10 (2003) 104-114.
[153] C.C. Wang, C.C. Chen, Physical properties of crosslinked cellulose catalyzed with nano titanium dioxide, J. Appl. Polym. Sci. 97 (2005) 2450-2456. https://doi.org/10.1002/app.22018
[154] X.Q. Song, A. Liu, C.T. Ji, H.T. Li, The effect of nano-particle concentration and heating time in the anti-crinkle treatment of silk. J. Jilin Instit. Technol. 22 (2001) 24-27.
[155] M.L. Gulrajani, D. Gupta, Emerging techniques for functional finishing textiles, Indian J. Fibre Text. Res. 36 (2011) 388-397.
[156] C.K. Kundu, Z. Li, L. Song, Y. Hu, An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications, Eur. Polym. J. 137 (2020) 109911. https://doi.org/10.1016/j.eurpolymj.2020.109911
[157] P. Pandit, K. Singha, V. Kumar, S. Maity, Advanced flame retardant agents for protective textiles and clothing, in: S. ul-Islam, B.S. Butola (Eds), Advances in Functional and Protective Textiles, Woodhead Publishing, 2020, pp. 397-414. https://doi.org/10.1016/B978-0-12-820257-9.00016-3
[158] J. Alongi, A. Frache, G. Malucelli, G. Camino, in: Kilinc-Balci FS (Eds), Handbook of fire resistant textiles. Cambridge: Woodhead Publishing, UK, 2013, pp. 63-70.
[159] S. Bourbigot, M. Le Bras, X. Flambard, M. Rochery, E. Devaux, J.D. Lichtenhan, in: Le Bras M, Wilkie CA, Bourbigot S, Duquesne S, Jama C (Eds), Fire retardancy of polymers: new applications of mineral fillers, Royal Society of Chemistry, London, 2005, pp. 189-195.
[160] S. Bourbigot, E. Devaux, X. Flambard, Flammability of polyamide-6/clay hybrid nanocomposite textiles, Polym. Degrad. Stab. 75 (2002) 397-402. https://doi.org/10.1016/S0141-3910(01)00245-2
[161] A.R. Horrocks, B.K. Kandola, S. Nazare’, D. Price, Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane, Polym. Adv. Technol. 22 (2011) 22-29. https://doi.org/10.1002/pat.1707
[162] A.R. Horrocks, Thermal (heat and fire) protection. in: R. Scott (Ed.), Textiles for protection, Cambridge, Woodhead Publishing Ltd, UK, 2005, pp. 398-440. https://doi.org/10.1533/9781845690977.2.398
[163] Horrocks, A. R, Recent developments in flame retardant textile finishes. In: K. L. Mittal, and T. Bahners (Eds.), Textile finishing, recent developments and future trends, Wiley-Scrivener. 2017, pp. 69-126. https://doi.org/10.1002/9781119426790.ch2
[164] F. Carosio, J. Alongi, A. Frache, Influence of surface activation by plasma and nanoparticle adsorption on the morphology, thermal stability and combustion behavior of PET fabrics, Eur. Polym. J. 47 (2011) 893-902. https://doi.org/10.1016/j.eurpolymj.2011.01.009
[165] F. Carosio, J. Alongi, Few durable layers suppress cotton combustion due to joint combination of layer by layer assembly and UV curing. RSC Adv. 5 (2015) 71482-71490. https://doi.org/10.1039/C5RA11856E
[166] A.J. Mateos, A.A. Cain, J.C. Grunlan, Deposition of flame retardant and conductive
nanocoatings on fabric, Ind. Eng. Chem. Res. 53 (2014) 6409-6416. https://doi.org/10.1021/ie500122u
[167] A.A. Cain, S. Murray, K.M. Holder, C.R. Nolen, J.C. Grunlan, Intumescent nanocoating extinguishes flame on fabric using aqueous polyelectrolyte complex deposited in a single step, Macromol. Mater. Eng. 299 (2014) 1180-1187. https://doi.org/10.1002/mame.201400022
[168] M. Haile, M. Leistner, O. Sarwar, C.M. Toler, R. Henderson, J.C. Grunlan, A wash-durable polyelectrolyte complex that extinguishes flames on polyester-cotton fabric, RSC Adv. 6 (2016) 33998-34004. https://doi.org/10.1039/C6RA03637F
[169] S. Talebi, M. Montazer, Denim Fabric with Flame retardant, hydrophilic and self-cleaning properties conferring by in-situ synthesis of silica nanoparticles, Cellulose, 27 (2020) 6643-6661. https://doi.org/10.1007/s10570-020-03195-6
[170] K.A. Salmeia, S. Gaan, G. Malucelli, Recent advances for flame retardancy of textiles based on phosphorus chemistry, Polymers 8 (2016) 319. https://doi.org/10.3390/polym8090319
[171] A. Quédé, C. Jama, P. Supiot, M. Le Bras, R. Delobel, O. Dessaux, P. Goudmand, Elaboration of fire retardant coatings on polyamide-6 using a cold plasma polymerization process, Surf. Coat. Technol. 151-152 (2002) 424-428. https://doi.org/10.1016/S0257-8972(01)01646-2
[172] A. Que’de’, B. Mutel, P. Supiot, O. Dessaux, C. Jama, M. Le Bras, R. Delobel, Plasma-assisted process for fire properties improvement of polyamide and clay nanocomposite-reinforced polyamide: A scale-up study. In: M. Le Bras, C. A. Wilkie, S. Bourbigot, S. Duquesne, C. Jama (Eds.), Fire retardancy of polymers. New applications of mineral fillers, Royal Society of Chemistry, London, 2005, pp. 276-290.
[173] T. Herbert, Atmospheric-pressure cold plasma processing technology. In R. Shishoo (Ed.), Plasma technologies for textiles, Cambridge: Woodhead Publishing Ltd, UK, 2007, pp. 79-128. https://doi.org/10.1533/9781845692575.1.79
[174] A.R. Horrocks, B. Kandola, S. Nazare’, D. Price, Flash fire resistant fabric, 2009, UK Patent Application 0900069.6, January 5.
[175] J. Tata, J. Alongi, A. Frache, Optimization of the procedure to burn textile fabrics by cone calorimeter: Part II. Results on nanoparticle-finished polyester, Fire Mater. 36 (2012) 527-537. https://doi.org/10.1002/fam.1105
[176] V. Totolin, M. Sarmadi, S.O. Manolache, F.S. Denes, Environmentally friendly flame-retardant materials produced by atmospheric pressure plasma modifications, J. Appl. Polym. Sci. 124 (2012) 116-122. https://doi.org/10.1002/app.35087
[177] P. Mistry, (assigned to MTIX Ltd., UK). Treating materials with combined energy sources, 2017, US Patent No. 9,605,376 B2, May 28.
[178] A.R. Horrocks, S. Eivazi, M. Ayesh, B. Kandola, Environmentally sustainable flame retardant surface treatments for textiles: The potential of a novel atmospheric plasma/UV laser technology, Fibers, 6 (2018) 31-44. https://doi.org/10.3390/fib6020031
[179] M.Y. Wang, A.R. Horrocks, S. Horrocks, M.E. Hall, J.S. Pearson, S. Clegg, Flame retardant textile back-coatings. Part 1: Antimony-halogen system interactions and the effects of replacement by phosphorus-containing agents, J. Fire Sci. 18 (2000) 243-323. https://doi.org/10.1106/16WQ-NMXN-EM6Q-GDW9
[180] R. Shishoo, (Ed.), Plasma technologies for textiles, Cambridge: Woodhead Publishing Ltd, Wood-head Textiles Series No. 62., UK, 2007 pp. 50-100. https://doi.org/10.1533/9781845692575
[181] W.G. Dong, G. Huang, Research on properties of nano polypropylene/TiO2 composite fiber. J. Textile Res. 23 (2002) 22-23.
[182] H. Memon, H. Wang, S. Yasin, A. Halepoto, Influence of incorporating silver nanoparticles in protease treatment on fiber friction, antistatic, and antibacterial properties of wool fibers, J. Chem, (2018) 4845687. https://doi.org/10.1155/2018/4845687
[183] M.M. Hassan, Enhanced colour, hydrophobicity, UV radiation absorption and antistatic properties of wool fabric multi-functionalised with silver nanoparticles, Colloids Surf. A Physicochem. Eng. Asp. 581 (2019) 123819. https://doi.org/10.1016/j.colsurfa.2019.123819
[184] A. Yadav, V. Prasad, A.A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, N. Vigneshwaran, Functional finishing in cotton fabrics using zinc oxide nanoparticles, Bull. Mater. Sci. 29 (2006) 641-645. https://doi.org/10.1007/s12034-006-0017-y
[185] Z. Li, Physics essay: the nature of charge, principle of charge interaction and coulomb’s law. Appl. Phy. Res. 7 (2015) 52-55. https://doi.org/10.5539/apr.v7n6p52
[186] Z. Abdullaeva, Nanomaterials for Clothing and Textile Products, In: Nanomaterials in Daily Life, Springer. 2017, pp. 111-132. https://doi.org/10.1007/978-3-319-57216-1_6
[187] M. Wasim, M.R. Khan, M. Mushtaq, A. Naeem, M. Han, Q. Wei, Surface modification of bacterial cellulose by copper and zinc oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics, Coatings. 10 (2020) 364. https://doi.org/10.3390/coatings10040364
[188] D. Wang, Y. Lin, Y. Zhao, L. Gu, Polyacrylonitrile fibers modified by nano-antimony-doped tin oxide particles, Text. Res. J. 74 (2004) 1060-1065. https://doi.org/10.1177/004051750407401206
[189] C.K. Kundu, L. Song, Y. Hu, Nanoparticles based coatings for multifunctional Polyamide 66 textiles with improved flame retardancy and hydrophilicity, J. Taiwan Inst. Chem. Eng. 112 (2020) 15-19. https://doi.org/10.1016/j.jtice.2020.07.013
[190] J. Rovira, J.L. Domingo, Human health risks due to exposure to inorganic and organic chemicals from textiles: a review, Environ. Res. 168 (2019) 62-69. https://doi.org/10.1016/j.envres.2018.09.027
[191] C.M. Wood, C. Hogstrand, F. Galvez, R.S. Munger, The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+, Aquat. Toxicol. 35 (1996) 93-109. https://doi.org/10.1016/0166-445X(96)00003-3