Green Chemical Synthesis in the Presence of Nanoparticles as Catalysts

$30.00

Green Chemical Synthesis in the Presence of Nanoparticles as Catalysts

Abeda Sultana Touchy, S.M.A. Hakim Siddiki

As part of the heterogeneous catalysis concept, nanoparticle catalysis is the advanced key technology to connect the divergence between classical chemical synthesis methods and environmentally benign sustainable synthesis processes. The demonstration of nanoparticle catalysts for the sustainable and mild synthesis of chemicals is a fast-growing area in catalysis. This chapter will focus on a series of catalytic systems for hydrogen transfer-type or so-called borrowing hydrogen reactions using supported metal catalysts to synthesize chemicals directly and will highlight a group of coupling reactions that generates C-O, C-C, C-N, and C-S bonds. These catalytic coupling reactions possess a general mechanistic aspect: dehydrogenation of poor electrophile alcohols/amines to activated electrophiles, condensation (self or cross or with different nucleophiles), and hydrogenation of condensate. The feasibility of these catalytic coupling reactions is abided with the proper catalyst design where supports are enriched with acidic, basic, or amphoteric properties that promote the condensation reactions, and metal nanoparticle sites are responsible for the hydrogen transfer from the alcohols or amines followed by the re-hydrogenation of the condensation product accordingly. Compared to the state-of-the-art homogeneous catalytic systems, these heterogeneous metal nanoparticle-catalyzed reactions possess catalytic reusability, catalytic efficiency, and sustainability advantages.

Keywords
Nanoparticles Catalysis, Coupling Reactions, Green Synthesis, Hydrogen borrowing/Dehydrogenative Reactions

Published online 2/1/2023, 33 pages

Citation: Abeda Sultana Touchy, S.M.A. Hakim Siddiki, Green Chemical Synthesis in the Presence of Nanoparticles as Catalysts, Materials Research Foundations, Vol. 141, pp 42-74, 2023

DOI: https://doi.org/10.21741/9781644902288-3

Part of the book on Emerging Applications of Nanomaterials

References
[1] K. Philippot, P. Serp, Concepts in Nanocatalysis, Nanomater. Catal. First Ed. (2012) 1–54. https//doi.org/10.1002/9783527656875.ch1
[2] D. Astruc, ed., Nanoparticles and Catalysis, wiley, 2008. https://www.wiley.com/en-ie/Nanoparticles+and+Catalysis-p-9783527315727
[3] T. Ishida, M. Haruta, Gold catalysts: Towards sustainable chemistry, Angew. Chemie – Int. Ed. 46 (2007) 7154–7156. https//doi.org/10.1002/anie.200701622
[4] A.S.K. Hashmi, G.J. Hutchings, Gold Catalysis, Angew. Chemie – Int. Ed. 45 (2006) 7896–7936. https//doi.org/10.1002/anie.200602454
[5] G.A. Somorjai, H. Frei, J.Y. Park, Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques, J. Am. Chem. Soc. 131 (2009) 16589–16605. https//doi.org/10.1021/ja9061954
[6] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, 2005. https//doi.org/10.1021/cr030063a
[7] E. de Smit, I. Swart, J.F. Creemer, C. Karunakaran, D. Bertwistle, H.W. Zandbergen, F.M.F. de Groot, B.M. Weckhuysen, Nanoscale Chemical Imaging of the Reduction Behavior of a Single Catalyst Particle, Angew. Chemie. 121 (2009) 3686–3690. https//doi.org/10.1002/ange.200806003
[8] V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis, Green Chem. 12 (2010) 743–75. https//doi.org/10.1039/b921171c
[9] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036–3075. https//doi.org/10.1021/cr100230z
[10] A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.M. Basset, V. Polshettiwar, Nanocatalysts for Suzuki cross-coupling reactions, Chem. Soc. Rev. 40 (2011) 5181–5203. https//doi.org/10.1039/c1cs15079k
[11] X. Xie, Y. Li, Z.Q. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by Co 3 O 4 nanorods, Nature. 458 (2009) 746–749. https//doi.org/10.1038/nature07877
[12] T.D. Nixon, M.K. Whittlesey, J.M.J. Williams, Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology, Dalt. Trans. (2009) 753–762. https//doi.org/10.1039/b813383b
[13] M.H.S.A. Hamid, P.A. Slatford, J.M.J. Williams, Borrowing hydrogen in the activation of alcohols, Adv. Synth. Catal. 349 (2007) 1555–1575. https//doi.org/10.1002/adsc.200600638
[14] R. Grigg, T.R.B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, Transition metal-catalysed N-alkylation of amines by alcohols, J. Chem. Soc. Chem. Commun. (1981) 611. https//doi.org/10.1039/c39810000611
[15] A. Balker, J. Kijenski, Catalytic Synthesis of Higher Aliphatic Amines from the Corresponding Alcohols, 1985. https//doi.org/10.1080/01614948508064235
[16] L. Liu, A. Corma, Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles, Chem. Rev. 118 (2018) 4981–5079. https//doi.org/10.1021/acs.chemrev.7b00776
[17] S.M.A. Hakim Siddiki, T. Toyao, K.I. Shimizu, Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts, Green Chem. 20 (2018) 2933–2952. https//doi.org/10.1039/c8gc00451j
[18] K. Shimizu, Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology, Catal. Sci. Technol. 5 (2015) 1412–1427. https//doi.org/10.1039/C4CY01170H
[19] G. Guillena, D.J. Ramón, M. Yus, Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles, Chem. Rev. 110 (2010) 1611–1641. https//doi.org/10.1021/cr9002159
[20] G. Guillena, D.J. Ramón, M. Yus, Alcohols as electrophiles in C-C bond-forming reactions: The hydrogen autotransfer process, Angew. Chemie – Int. Ed. 46 (2007) 2358–2364. https//doi.org/10.1002/anie.200603794
[21] F. Alonso, P. Riente, M. Yus, Nickel Nanoparticles in Hydrogen Transfer Reactions, Acc. Chem. Res. 44 (2011) 379–391. https//doi.org/10.1021/ar1001582
[22] K.I. Fujita, R. Yamaguchi, Cp*Ir complex-catalyzed hydrogen transfer reactions directed toward environmentally benign organic synthesis, Synlett. (2005) 560–571. https//doi.org/10.1055/s-2005-862381
[23] Y. Obora, Y. Ishii, Iridium-catalyzed reactions involving transfer hydrogenation, addition, N-heterocyclization, and alkylation using alcohols and diols as key substrates, Synlett. (2011) 30–51. https//doi.org/10.1055/s-0030-1259094
[24] Y. Obora, Recent advances in α-alkylation reactions using alcohols with hydrogen borrowing methodologies, ACS Catal. 4 (2014) 3972–3981. https//doi.org/10.1021/cs501269d
[25] J. Choi, A.H.R. MacArthur, M. Brookhart, A.S. Goldman, Dehydrogenation and related reactions catalyzed by iridium pincer complexes, Chem. Rev. 111 (2011) 1761–1779. https//doi.org/10.1021/cr1003503
[26] C. Gunanathan, D. Milstein, Metal-ligand cooperation by aromatization-dearomatization: A new paradigm in bond activation and “green” catalysis, Acc. Chem. Res. 44 (2011) 588–602. https//doi.org/10.1021/ar2000265
[27] R.A.W. Johnstone, A.H. Wilby, I.D. Entwistle, Heterogeneous Catalytic Transfer Hydrogenation and Its Relation to Other Methods for Reduction of Organic Compounds, Chem. Rev. 85 (1985) 129–170. https//doi.org/10.1021/cr00066a003
[28] G. Zassinovich, G. Mestroni, S. Giadiali, Asymmetric Hydrogen Transfer Reactions Promoted by Homogeneous Transition Metal Catalysts, Chem. Rev. 92 (1992) 1051–1069. https//doi.org/10.1021/cr00013a015
[29] J.S. Cha, Recent developments in Meerwein-Ponndorf-Verley and related reactions for the reduction of organic functional groups using aluminum, boron, and other metal reagents: A review, Org. Process Res. Dev. 10 (2006) 1032–1053. https//doi.org/10.1021/op068002c
[30] R. Noyori, S. Hashiguchi, Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes, Acc. Chem. Res. 30 (1997) 97–102. https//doi.org/10.1021/ar9502341
[31] T.L. Lambat, R.G. Chaudhary, A.A. Abdal, R.K. Mishra S.H. Mahmood, S. Banerjee, Mesoporous PbO nanoparticle-catalyzed synthesis of arylbenzodioxy xanthenedione scaffolds under solvent-free conditions in a ball mill, RSC Advances 9, 31683-31690
[32] T. Ikariya, A.J. Blacker, Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular catalysts, Acc. Chem. Res. 40 (2007) 1300–1308. https//doi.org/10.1021/ar700134q
[33] R. Malacea, R. Poli, E. Manoury, Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes, Coord. Chem. Rev. 254 (2010) 729–752. https//doi.org/10.1016/j.ccr.2009.09.033
[34] F. Alonso, P. Riente, F. Rodríguez-Reinoso, J. Ruiz-Martínez, A. Sepúlveda-Escribano, M. Yus, Platinum nanoparticles supported on titania as an efficient hydrogen-transfer catalyst, J. Catal. 260 (2008) 113–118. https//doi.org/10.1016/j.jcat.2008.09.009
[35] M.J. Gracia, J.M. Campelo, E. Losada, R. Luque, J.M. Marinas, A.A. Romero, Microwave-assisted versatile hydrogenation of carbonyl compounds using supported metal nanoparticles, Org. Biomol. Chem. 7 (2009) 4821–4824. https//doi.org/10.1039/b913695a
[36] J.Q. Yu, H.C. Wu, C. Ramarao, J.B. Spencer, S. V. Ley, Transfer hydrogenation using recyclable polyurea-encapsulated palladium: Efficient and chemoselective reduction of aryl ketones, Chem. Commun. 3 (2003) 678–679. https//doi.org/10.1039/b300074p
[37] K. Yamaguchi, T. Koike, M. Kotani, M. Matsushita, S. Shinachi, N. Mizuno, Synthetic scope and mechanistic studies of Ru(OH)x/Al 2O3-catalyzed heterogeneous hydrogen-transfer reactions, Chem. – A Eur. J. 11 (2005) 6574–6582. https//doi.org/10.1002/chem.200500539
[38] M.L. Kantam, B.P.C. Rao, B.M. Choudary, B. Sreedhar, Selective transfer hydrogenation of carbonyl compounds by ruthenium nanoclusters supported on alkali-exchanged zeolite beta, Adv. Synth. Catal. 348 (2006) 1970–1976. https//doi.org/10.1002/adsc.200505497
[39] B. Baruwati, V. Polshettiwar, R.S. Varma, Magnetically recoverable supported ruthenium catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds, Tetrahedron Lett. 50 (2009) 1215–1218. https//doi.org/10.1016/j.tetlet.2009.01.014
[40] C. Hammond, M.T. Schümperli, S. Conrad, I. Hermans, Hydrogen transfer processes mediated by supported iridium oxide nanoparticles, ChemCatChem. 5 (2013) 2983–2990. https//doi.org/10.1002/cctc.201300253
[41] F.Z. Su, L. He, J. Ni, Y. Cao, H.Y. He, K.N. Fan, Efficient and chemoselective reduction of carbonyl compounds with supported gold catalysts under transfer hydrogenation conditions, Chem. Commun. (2008) 3531–3533. https//doi.org/10.1039/b807608a
[42] L. He, J. Ni, L.C. Wang, F.J. Yu, Y. Cao, H.Y. He, K.N. Fan, Aqueous room-temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes, Chem. – A Eur. J. 15 (2009) 11833–11836. https//doi.org/10.1002/chem.200901261
[43] F. Alonso, P. Riente, M. Yus, Hydrogen-transfer reduction of carbonyl compounds promoted by nickel nanoparticles, Tetrahedron. 64 (2008) 1847–1852. https//doi.org/10.1016/j.tet.2007.11.093
[44] J. Tanna, R.G. Chaudhary, N.V. Gandhare, A.R. Rai, S. Yerpude, H.D. Juneja, Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity, J. Expt. Nanosci. 11 (2016) 884–900
[45] Chaudhary RG, A Tanna J, V Gandhare N, R Rai A, D Juneja H. Synthesis of nickel NPs: Microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv Mater Lett. 2015;1;6(11):990-8
[46] T. Subramanian, K. Pitchumani, Transfer hydrogenation of carbonyl compounds and carbon-carbon multiple bonds by zeolite supported Cu nanoparticles, Catal. Sci. Technol. 2 (2012) 296–300. https//doi.org/10.1039/c1cy00383f
[47] L. Huang, Y. Zhu, C. Huo, H. Zheng, G. Feng, C. Zhang, Y. Li, Mechanistic insight into the heterogeneous catalytic transfer hydrogenation over Cu/Al2O3: Direct evidence for the assistant role of support, J. Mol. Catal. A Chem. 288 (2008) 109–115. https//doi.org/10.1016/j.molcata.2008.03.026
[48] M. Kidwai, V. Bansal, A. Saxena, R. Shankar, S. Mozumdar, Ni-nanoparticles: an efficient green catalyst for chemoselective reduction of aldehydes, Tetrahedron Lett. 47 (2006) 4161–4165. https//doi.org/10.1016/j.tetlet.2006.04.048
[49] J.R. Ruiz, C. Jiménez-Sanchidrián, J.M. Hidalgo, Meerwein-Ponndorf-Verley reaction of acetophenones with 2-propanol over MgAl mixed oxide: The substituent effect, Catal. Commun. 8 (2007) 1036–1040. https//doi.org/10.1016/j.catcom.2006.10.007
[50] R. Radhakrishan, D.M. Do, S. Jaenicke, Y. Sasson, G.K. Chuah, Potassium phosphate as a solid base catalyst for the catalytic transfer hydrogenation of aldehydes and ketones, ACS Catal. 1 (2011) 1631–1636. https//doi.org/10.1021/cs200299v
[51] Y. Zhu, G. Chuah, S. Jaenicke, Chemo- and regioselective Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta, J. Catal. 227 (2004) 1–10. https//doi.org/10.1016/j.jcat.2004.05.037
[52] A. Corma, M.E. Domine, S. Valencia, Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite, J. Catal. 215 (2003) 294–304. https//doi.org/10.1016/S0021-9517(03)00014-9
[53] A. Ramanathan, D. Klomp, J.A. Peters, U. Hanefeld, Zr-TUD-1: A novel heterogeneous catalyst for the Meerwein-Ponndorf-Verley reaction, J. Mol. Catal. A Chem. 260 (2006) 62–69. https//doi.org/10.1016/j.molcata.2006.06.057
[54] K. Shimura, K. Shimizu, Transfer hydrogenation of ketones by ceria-supported Ni catalysts, Green Chem. 14 (2012) 2983–2985. https//doi.org/10.1039/c2gc35836k
[55] R. Chorghade, C. Battilocchio, J.M. Hawkins, S. V. Ley, Sustainable flow oppenauer oxidation of secondary benzylic alcohols with a heterogeneous zirconia catalyst, Org. Lett. 15 (2013) 5698–5701. https//doi.org/10.1021/ol4027107
[56] M. Hayashi, K. Yamada, S.Z. Nakayama, H. Hayashi, S. Yamazaki, Environmentally benign oxidation using a palladium catalyst system, Green Chem. 2 (2000) 257–260. https//doi.org/10.1039/b003887n
[57] C. Keresszegi, T. Mallat, A. Baiker, Selective transfer dehydrogenation of aromatic alcohols on supported palladium, New J. Chem. 25 (2001) 1163–1167. https//doi.org/10.1039/b102463a
[58] F. Zaccheria, N. Ravasio, R. Psaro, A. Fusi, Anaerobic oxidation of non-activated secondary alcohols over Cu/Al 2O3, Chem. Commun. (2005) 253–255. https//doi.org/10.1039/b413634a
[59] R. Shi, F. Wang, Tana, Y. Li, X. Huang, W. Shen, A highly efficient Cu/La2O3 catalyst for transfer dehydrogenation of primary aliphatic alcohols, Green Chem. 12 (2010) 108–11. https//doi.org/10.1039/b919807p
[60] F. Wang, R. Shi, Z.Q. Liu, P.J. Shang, X. Pang, S. Shen, Z. Feng, C. Li, W. Shen, Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO 3, ACS Catal. 3 (2013) 890–894. https//doi.org/10.1021/cs400255r
[61] K. Taguchi, H. Nakagawa, T. Hirabayashi, S. Sakaguchi, Y. Ishii, An Efficient Direct α-Alkylation of Ketones with Primary Alcohols Catalyzed by [Ir(cod)CI]2/PPh3/KOH System without Solvent, J. Am. Chem. Soc. 126 (2004) 72–73. https//doi.org/10.1021/ja037552c
[62] S. Ogawa, Y. Obora, Iridium-catalyzed selective α-methylation of ketones with methanol, Chem. Commun. 50 (2014) 2491–2493. https//doi.org/10.1039/c3cc49626k
[63] C.S. Cho, B.T. Kim, T.J. Kim, S.C. Shim, An unusual type of ruthenium-catalyzed transfer hydrogenation of ketones with alcohols accompanied by C-C coupling, J. Org. Chem. 66 (2001) 9020–9022. https//doi.org/10.1021/jo0108459
[64] R. Martínez, G.J. Brand, D.J. Ramón, M. Yus, [Ru(DMSO)4] Cl2 catalyzes the α-alkylation of ketones by alcohols, Tetrahedron Lett. 46 (2005) 3683–3686. https//doi.org/10.1016/j.tetlet.2005.03.158
[65] T. Kuwahara, T. Fukuyama, I. Ryu, RuHCl(CO)(PPh 3 ) 3 -Catalyzed α-Alkylation of Ketones with Primary Alcohols, Org. Lett. 14 (2012) 4703–4705. https//doi.org/10.1021/ol302145a
[66] K. Motokura, D. Nishimura, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, A Ruthenium-Grafted Hydrotalcite as a Multifunctional Catalyst for Direct α-Alkylation of Nitriles with Primary Alcohols, J. Am. Chem. Soc. 126 (2004) 5662–5663. https//doi.org/10.1021/ja049181l
[67] C.S. Cho, A palladium-catalyzed route for α-alkylation of ketones by primary alcohols, J. Mol. Catal. A Chem. 240 (2005) 55–60. https//doi.org/10.1016/j.molcata.2005.06.043
[68] M.S. Kwon, N. Kim, S.H. Seo, I.S. Park, R.K. Cheedrala, J. Park, Recyclable palladium catalyst for highly selective α alkylation of ketones with alcohols, Angew. Chemie – Int. Ed. 44 (2005) 6913–6915. https//doi.org/10.1002/anie.200502422
[69] Y.M.A. Yamada, Y. Uozumi, A solid-phase self-organized catalyst of nanopalladium with main-chain viologen polymers: α-alkylation of ketones with primary alcohols, Org. Lett. 8 (2006) 1375–1378. https//doi.org/10.1021/ol060166q
[70] S. Kim, S.W. Bae, J.S. Lee, J. Park, Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C-C bond forming reaction between primary alcohols and ketones under ambient conditions, Tetrahedron. 65 (2009) 1461–1466. https//doi.org/10.1016/j.tet.2008.12.005
[71] X. Cui, Y. Zhang, F. Shi, Y. Deng, Organic ligand-free alkylation of amines, carboxamides, sulfonamides, and ketones by using alcohols catalyzed by heterogeneous Ag/Mo oxides, Chem. – A Eur. J. 17 (2011) 1021–1028. https//doi.org/10.1002/chem.201001915
[72] F. Alonso, P. Riente, M. Yus, Alcohols for the α-alkylation of methyl ketones and indirect aza-wittig reaction promoted by nickel nanoparticles, European J. Org. Chem. (2008) 4908–4914. https//doi.org/10.1002/ejoc.200800729
[73] C. Chaudhari, S.M.A.H. Siddiki, K.-I. Shimizu, Self-coupling of secondary alcohols and α-alkylation of methyl ketones with secondary alcohols by Pt/CeO2 catalyst, Top. Catal. 57 (2014). https//doi.org/10.1007/s11244-014-0268-6
[74] A. Fischer, P. Makowski, J.O. Müller, M. Antonietti, A. Thomas, F. Goettmann, High-surface-area TiO2 and TiN as catalysts for the C-C coupling of alcohols and ketones., ChemSusChem. 1 (2008) 444–449. https//doi.org/10.1002/cssc.200800019
[75] M. Dixit, M. Mishra, P.A. Joshi, D.O. Shah, Clean borrowing hydrogen methodology using hydrotalcite supported copper catalyst, Catal. Commun. 33 (2013) 80–83. https//doi.org/10.1016/j.catcom.2012.12.027
[76] C. Löfberg, R. Grigg, M.A. Whittaker, A. Keep, A. Derrick, Efficient solvent-free selective monoalkylation of arylacetonitriles with mono-, bis-, and tris-primary alcohols catalyzed by a Cp*Ir complex, J. Org. Chem. 71 (2006) 8023–8027. https//doi.org/10.1021/jo061113p
[77] T. Naota, H. Taki, M. Mizuno, S. Murahashi, Ruthenium-catalyzed aldol and Michael reactions of activated nitriles, J. Am. Chem. Soc. 111 (1989) 5954–5955. https//doi.org/10.1021/ja00197a073
[78] M. Morita, Y. Obora, Y. Ishii, Alkylation of active methylene compounds with alcohols catalyzed by an iridium complex, Chem. Commun. (2007) 2850–2852. https//doi.org/10.1039/b702293j
[79] T. Sawaguchi, Y. Obora, Iridium-catalyzed α-alkylation of acetonitrile with primary and secondary alcohols, Chem. Lett. 40 (2011) 1055–1057. https//doi.org/10.1246/cl.2011.1055
[80] K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda, Environmentally friendly one-pot synthesis of α-alkylated nitriles using hydrotalcite-supported metal species as multifunctional solid catalysts, Chem. – A Eur. J. 12 (2006) 8228–8239. https//doi.org/10.1002/chem.200600317
[81] A. Corma, T. Ródenas, M.J. Sabater, Monoalkylations with alcohols by a cascade reaction on bifunctional solid catalysts: Reaction kinetics and mechanism, J. Catal. 279 (2011) 319–327. https//doi.org/10.1016/j.jcat.2011.01.029
[82] T. Jensen, R. Madsen, Ruthenium-Catalyzed Alkylation of Oxindole with Alcohols, J. Org. Chem. 74 (2009) 3990–3992. https//doi.org/10.1021/jo900341w
[83] R. Grigg, S. Whitney, V. Sridharan, A. Keep, A. Derrick, Iridium catalysed C-3 alkylation of oxindole with alcohols under solvent free thermal or microwave conditions, Tetrahedron. 65 (2009) 4375–4383. https//doi.org/10.1016/j.tet.2009.03.065
[84] G. Liu, T. Huang, Y. Zhang, X. Liang, Y. Li, H. Li, C-3 alkylation of oxindole with alcohols catalyzed by an indene-functionalized mesoporous iridium catalyst, Catal. Commun. 12 (2011) 655–659. https//doi.org/10.1016/j.catcom.2010.12.021
[85] C. Chaudhari, S.M.A.H. Siddiki, K. Kon, A. Tomita, Y. Tai, K.I. Shimizu, C-3 alkylation of oxindole with alcohols by Pt/CeO2 catalyst in additive-free conditions, Catal. Sci. Technol. 4 (2014) 1064–1069. https//doi.org/10.1039/c3cy00911d
[86] S. Fujita, K. Imagawa, S. Yamaguchi, J. Yamasaki, S. Yamazoe, T. Mizugaki, T. Mitsudome, A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols, Sci. Rep. 11 (2021) 1–10. https//doi.org/10.1038/s41598-021-89561-1
[87] R. Cano, M. Yus, D.J. Ramón, Environmentally friendly and regioselective C3-alkylation of indoles with alcohols through a hydrogen autotransfer strategy, Tetrahedron Lett. 54 (2013) 3394–3397. https//doi.org/10.1016/j.tetlet.2013.04.062
[88] S. Whitneys, R. Grigg, A. Derrick, A. Keep, [Cp*IrCl2]2-catalyzed indirect functionalization of alcohols: Novel strategies for the synthesis of substituted indoles, Org. Lett. 9 (2007) 3299–3302. https//doi.org/10.1021/ol071274v
[89] S. Bähn, S. Imm, K. Mevius, L. Neubert, A. Tillack, J.M.J. Williams, M. Beller, Selective ruthenium-catalyzed N-alkylation of indoles by using alcohols, Chem. – A Eur. J. 16 (2010) 3590–3593. https//doi.org/10.1002/chem.200903144
[90] S.M.A.H. Siddiki, K. Kon, K.I. Shimizu, General and selective C-3 alkylation of indoles with primary alcohols by a reusable Pt nanocluster catalyst, Chem. – A Eur. J. 19 (2013) 14416–14419. https//doi.org/10.1002/chem.201302464
[91] J.T. Kozlowski, R.J. Davis, Heterogeneous catalysts for the guerbet coupling of alcohols, ACS Catal. 3 (2013) 1588–1600. https//doi.org/10.1021/cs400292f
[92] G.R.M. Dowson, M.F. Haddow, J. Lee, R.L. Wingad, D.F. Wass, Catalytic conversion of ethanol into an advanced biofuel: Unprecedented selectivity for n-butanol, Angew. Chemie – Int. Ed. 52 (2013) 9005–9008. https//doi.org/10.1002/anie.201303723
[93] K. Koda, T. Matsu-ura, Y. Obora, Y. Ishii, Guerbet Reaction of Ethanol to n -Butanol Catalyzed by Iridium Complexes , Chem. Lett. 38 (2009) 838–839. https//doi.org/10.1246/cl.2009.838
[94] T. Matsu-Ura, S. Sakaguchi, Y. Obora, Y. Ishii, Guerbet reaction of primary alcohols leading to β-alkylated dimer alcohols catalyzed by iridium complexes, J. Org. Chem. 71 (2006) 8306–8308. https//doi.org/10.1021/jo061400t
[95] S.A. El-Molla, Dehydrogenation and condensation in catalytic conversion of iso-propanol over CuO/MgO system doped with Li2O and ZrO2, Appl. Catal. A Gen. 298 (2006) 103–108. https//doi.org/10.1016/j.apcata.2005.09.029
[96] G. Torres, C.R. Apesteguía, J.I. Di Cosimo, One-step methyl isobutyl ketone (MIBK) synthesis from 2-propanol: Catalyst and reaction condition optimization, Appl. Catal. A Gen. 317 (2007) 161–170. https//doi.org/10.1016/j.apcata.2006.10.010
[97] O. Kose, S. Saito, Cross-coupling reaction of alcohols for carbon-carbon bond formation using pincer-type NHC/palladium catalysts, Org. Biomol. Chem. 8 (2010) 896–900. https//doi.org/10.1039/b914618k
[98] S. Musa, L. Ackermann, D. Gelman, Dehydrogenative cross-coupling of primary and secondary alcohols, Adv. Synth. Catal. 355 (2013) 3077–3080. https//doi.org/10.1002/adsc.201300656
[99] I.S. Makarov, R. Madsen, Ruthenium-catalyzed self-coupling of primary and secondary alcohols with the liberation of dihydrogen, J. Org. Chem. 78 (2013) 6593–6598. https//doi.org/10.1021/jo4008699
[100] K. Shimura, K. Kon, S.M.A. Hakim Siddiki, K.I. Shimizu, Self-coupling of secondary alcohols by Ni/CeO2 catalyst, Appl. Catal. A Gen. 462–463 (2013) 137–142. https//doi.org/10.1016/j.apcata.2013.04.040
[101] C.S. Cho, B.T. Kim, H.-S. Kim, T.-J. Kim, S.C. Shim, Ruthenium-Catalyzed One-Pot β-Alkylation of Secondary Alcohols with Primary Alcohols, Organometallics. 22 (2003) 3608–3610. https//doi.org/10.1021/om030307h
[102] S.C. Chan, X.R. Wen, C.S. Sang, Pd/C-catalyzed oxidative alkylation of secondary alcohols with primary alcohols, Bull. Korean Chem. Soc. 26 (2005) 1611–1613. https//doi.org/10.5012/bkcs.2005.26.10.1611
[103] G.R.A. Adair, J.M.J. Williams, Oxidant-free oxidation: Ruthenium catalysed dehydrogenation of alcohols, Tetrahedron Lett. 46 (2005) 8233–8235. https//doi.org/10.1016/j.tetlet.2005.09.083
[104] R. Martínez, D.J. Ramón, M. Yus, RuCl2(DMSO)4 catalyzes the β-alkylation of secondary alcohols with primary alcohols through a hydrogen autotransfer process, Tetrahedron. 62 (2006) 8982–8987. https//doi.org/10.1016/j.tet.2006.07.012
[105] K.I. Fujita, C. Asai, T. Yamaguchi, F. Hanasaka, R. Yamaguchi, Direct β-alkylation of secondary alcohols with primary alcohols catalyzed by a Cp*Ir complex, Org. Lett. 7 (2005) 4017–4019. https//doi.org/10.1021/ol051517o
[106] A. Prades, M. Viciano, M. Sanaú, E. Peris, Preparation of a series of “Ru(p-cymene)” complexes with different N-heterocyclic carbene ligands for the catalytic β-alkylation of secondary alcohols and dimerization of phenylacetylene, Organometallics. 27 (2008) 4254–4259. https//doi.org/10.1021/om800377m
[107] M. Viciano, M. Sanaú, E. Peris, Ruthenium janus-head complexes with a triazolediylidene ligand. Structural features and catalytic applications, Organometallics. 26 (2007) 6050–6054. https//doi.org/10.1021/om7007919
[108] A.P. Da Costa, M. Viciano, M. Sanaú, S. Merino, J. Tejeda, E. Peris, B. Royo, First Cp*-functionalized N-heterocyclic carbene and its coordination to iridium. Study of the catalytic properties, Organometallics. 27 (2008) 1305–1309. https//doi.org/10.1021/om701186u
[109] K.I. Shimizu, R. Sato, A. Satsuma, Direct C-C cross-coupling of secondary and primary alcohols catalyzed by a γ-alumina-supported silver subnanocluster, Angew. Chemie – Int. Ed. 48 (2009) 3982–3986. https//doi.org/10.1002/anie.200901057
[110] X. Liu, R.S. Ding, L. He, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, C-C cross-coupling of primary and secondary benzylic alcohols using supported gold-based bimetallic catalysts, ChemSusChem. 6 (2013) 604–608. https//doi.org/10.1002/cssc.201200804
[111] R. Cano, M. Yus, D.J. Ramón, First practical cross-alkylation of primary alcohols with a new and recyclable impregnated iridium on magnetite catalyst, Chem. Commun. 48 (2012) 7628–7630. https//doi.org/10.1039/c2cc33101b
[112] Y. Obora, S. Ogawa, N. Yamamoto, Iridium-catalyzed alkylation of methylquinolines with alcohols, J. Org. Chem. 77 (2012) 9429–9433. https//doi.org/10.1021/jo3019347
[113] C. Chaudhari, S.M.A. Hakim Siddiki, K.I. Shimizu, Alkylation of 2-methylquinoline with alcohols under additive-free conditions by Al2O3-supported Pt catalyst, Tetrahedron Lett. 54 (2013) 6490–6493. https//doi.org/10.1016/j.tetlet.2013.09.077
[114] S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller, The catalytic amination of alcohols, ChemCatChem. 3 (2011) 1853–1864. https//doi.org/10.1002/cctc.201100255
[115] A.C. Marr, Organometallic hydrogen transfer and dehydrogenation catalysts for the conversion of bio-renewable alcohols, Catal. Sci. Technol. 2 (2012) 279–287. https//doi.org/10.1039/c1cy00338k
[116] A. Corma, T. Ródenas, M.J. Sabater, A bifunctional PdVMgO solid catalyst for the one-pot selective N-monoalkylation of amines with alcohols, Chem. – A Eur. J. 16 (2010) 254–260. https//doi.org/10.1002/chem.200901501
[117] J.W. Kim, K. Yamaguchi, N. Mizuno, Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide, J. Catal. 263 (2009) 205–208. https//doi.org/10.1016/j.jcat.2009.01.020
[118] K. Yamaguchi, J. He, T. Oishi, N. Mizuno, The “borrowing hydrogen strategy” by supported ruthenium hydroxide catalysts: Synthetic scope of symmetrically and unsymmetrically substituted amines, Chem. – A Eur. J. 16 (2010) 7199–7207. https//doi.org/10.1002/chem.201000149
[119] K. Shimizu, M. Nishimura, A. Satsuma, γ-alumina-supported silver cluster for N-benzylation of anilines with alcohols, ChemCatChem. 1 (2009) 497–503. https//doi.org/10.1002/cctc.200900209
[120] L. He, X.B. Lou, J. Ni, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Efficient and clean gold-catalyzed one-pot selective n-alkylation of amines with alcohols, Chem. – A Eur. J. 16 (2010) 13965–13969. https//doi.org/10.1002/chem.201001848
[121] W. He, L. Wang, C. Sun, K. Wu, S. He, J. Chen, P. Wu, Z. Yu, Pt-Sn/γ-Al2O3-catalyzed highly efficient direct synthesis of secondary and tertiary amines and imines, Chem. – A Eur. J. 17 (2011) 13308–13317. https//doi.org/10.1002/chem.201101725
[122] H. Ohta, Y. Yuyama, Y. Uozumi, Y.M.A. Yamada, In-Water Dehydrative Alkylation of Ammonia and Amines with Alcohols by a Polymeric Bimetallic Catalyst, Org. Lett. 13 (2011) 3892–3895. https//doi.org/10.1021/ol201422s
[123] R. Martínez, D.J. Ramón, M. Yus, Selective N-monoalkylation of aromatic amines with benzylic alcohols by a hydrogen autotransfer process catalyzed by unmodified magnetite, Org. Biomol. Chem. 7 (2009) 2176–2181. https//doi.org/10.1039/b901929d
[124] P.R. Likhar, R. Arundhathi, M.L. Kantam, P.S. Prathima, Amination of alcohols catalyzed by copper-aluminium Hydrotalcite: A green synthesis of amines, European J. Org. Chem. (2009) 5383–5389. https//doi.org/10.1002/ejoc.200900628
[125] T. Yamakawa, I. Tsuchiya, D. Mitsuzuka, T. Ogawa, Alkylation of ethylenediamine with alcohols by use of Cu-based catalysts in the liquid phase, Catal. Commun. 5 (2004) 291–295. https//doi.org/10.1016/j.catcom.2004.03.004.s
[126] X. Yu, C. Liu, L. Jiang, Q. Xu, Manganese dioxide catalyzed N-alkylation of sulfonamides and amines with alcohols under air, Org. Lett. 13 (2011) 6184–6187. https//doi.org/10.1021/ol202582c
[127] M.M. Reddy, M.A. Kumar, P. Swamy, M. Naresh, K. Srujana, L. Satyanarayana, A. Venugopal, N. Narender, N-Alkylation of amines with alcohols over nanosized zeolite beta, Green Chem. 15 (2013) 3474–3483. https//doi.org/10.1039/c3gc41345d
[128] K.I. Shimizu, N. Imaiida, K. Kon, S.M.A. Hakim Siddiki, A. Satsuma, Heterogeneous Ni catalysts for N-alkylation of amines with alcohols, ACS Catal. 3 (2013) 998–1005. https//doi.org/10.1021/cs4001267
[129] K.I. Shimizu, K. Shimura, M. Nishimura, A. Satsuma, Silver cluster-promoted heterogeneous copper catalyst for N-alkylation of amines with alcohols, RSC Adv. 1 (2011) 1310–1317. https//doi.org/10.1039/c1ra00560j
[130] L. Wang, W. He, K. Wu, S. He, C. Sun, Z. Yu, Heterogeneous bimetallic Pt-Sn/γ-Al2O3 catalyzed direct synthesis of diamines from N-alkylation of amines with diols through a borrowing hydrogen strategy, Tetrahedron Lett. 52 (2011) 7103–7107. https//doi.org/10.1016/j.tetlet.2011.10.100
[131] F. DE ANGELIS, M. GRASSO, R. NICOLETTI, N -Alkylation of Indole with Secondary Alcohols, Synthesis (Stuttg). 1977 (1977) 335–336. https//doi.org/10.1055/s-1977-24388
[132] S.M.A. Hakim Siddiki, K. Kon, K.I. Shimizu, Selective N-alkylation of indoles with primary alcohols using a pt/HBEA catalyst†, Green Chem. 17 (2015) 173–177. https//doi.org/10.1039/c4gc01419g
[133] L. He, J.Q. Wang, Y. Gong, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Titania-supported iridium subnanoclusters as an efficient heterogeneous catalyst for direct synthesis of quinolines from nitroarenes and aliphatic alcohols, Angew. Chemie – Int. Ed. 50 (2011) 10216–10220. https//doi.org/10.1002/anie.201104089
[134] W.J. Boyle, F. Mares, Rhodium and Molybdenum Complexes as Catalysts for Conversion of Nitrobenzene and Aliphatic Alcohols to Alkylquinolines, Organometallics. 1 (1982) 1003–1006. https//doi.org/10.1021/om00067a020