Metallic Nanomaterials as Catalysts


Metallic Nanomaterials as Catalysts

Md Jafar Sharif, M. Jakir Hossain

With the advancement of nanoscience and nanotechnology, metallic nanomaterials emerged as a bridge between homogeneous and heterogeneous catalysis due to their higher catalytic activity, selectivity, and easy separation while maintaining high stability. The novel catalytic properties of metallic nanomaterials originate from their unique geometric structures and electronic structures that are remarkably different from the corresponding bulk materials. Metallic nanomaterials have a high population of atoms with low coordination number and quantized energy levels which depends on the structural parameters such as the size and shape of the nanomaterials. For bimetallic nanomaterial, the composition is another key parameter to regulate the catalytic properties. In this chapter, factors affecting the catalytic properties of metallic nanomaterial are discussed in detail with several important applications.

Nanoparticle, Nanocluster, Nanocatalyst, Heterogeneous Catalyst, Nanoalloy, Size and Shape Effect, Oxygen Reduction Reaction (ORR), CO Oxidation, CO2 Hydrogenation

Published online 2/1/2023, 28 pages

Citation: Md Jafar Sharif, M. Jakir Hossain, Metallic Nanomaterials as Catalysts, Materials Research Foundations, Vol. 141, pp 14-41, 2023


Part of the book on Emerging Applications of Nanomaterials

[1] G. Hutchings, M. Davidson, R. Catlow, C. Hardacre, N. Turner, P. Collier, Modern Developments in Catalysis. World Scientific, Europe, 2017.
[2] M. Khalil, G. T. M. Kadja, M. M. Ilmi, Advanced nanomaterials for catalysis: Current progress in fine chemical synthesis, hydrocarbon processing, and renewable energy, J. Ind. Eng. Chem. 93, (2021) 78-100.
[3] C. W Jones, Another Nobel Prize for Catalysis: Frances Arnold in 2. ACS Catal. 8 (2018) 10913−10913.
[4] D. J. Cole-Hamilton, Homogeneous Catalysis–New Approaches to Catalyst Separation, Recovery, and Recycling, Science 299 (2003) 1702-1706.
[5] V. Polshettiwar, T. Asefa, Introduction to Nanocatalysis in: Nanocatalysis Synthesis and Applications, John Wiley & Sons, Ltd, New Jersey, 2013, pp. 1-9.
[6] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C, Chem. Lett. 16 (1987) 405−408.
[7] C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, P. P. Edwards, Size-Dependent Chemistry: Properties of Nanocrystals, Advances in Chemistry, 12 (2002) 227-233.
[8] M. A. El-Sayed, Small Is Different: Shape-, Size-, and Composition-Dependent Properties of Some Colloidal Semiconductor Nanocrystals, Acc. Chem. Res., 37 (2004) 326-333.
[9] S. Cao, F. F. Tao, Y. Tang, Y. Li, J. Yu, Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts, Chem. Soc. 45 (2016) 4747-4765.
[10] K. An, G. A. Somorjai, Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis, Chem Cat Chem, 4 (2012) 1512-1524.
[11] R. Narayanan, M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4 (2004) 1343-1348.
[12] R. Narayanan, M. A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability, J. Phys. Chem. B, 109 (2005) 12663-12676.
[13] F. J. Perez-Alonso, D. N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I. E. Stephens, J. H. Nielsen, I. Chorkendorff, The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. 124 (2012), 4719−4721.
[14] K. J. J. Mayrhofer, B. B. Blizanac, M. Arenz, V. R. Stamenkovic, P. N. Ross, N. M. Markovic, The Impact of Geometric and Surface Electronic Properties of Pt-Catalysts on the Particle Size Effect in Electrocatalysis, J. Phys. Chem. B, 109 (2005)14433-14440.
[15] Y. Wu, S. Cai, D. Wang, W. He, Y. Li, Syntheses of Water-Soluble Octahedral, Truncated Octahedral, and Cubic Pt–Ni Nanocrystals and Their Structure–Activity Study in Model Hydrogenation Reactions, J. Am. Chem. Soc., 134 (2012) 8975–8981.
[16] H. Xiaoqing et al., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction, Science 348 (2015) 1230–1234. 10.1126/science.aaa8765
[17] H. M. Lu, X. K. Meng, Theoretical model to calculate catalytic activation energies of platinum nanoparticles of different sizes and shapes, J. Phys. Chem. C, 114 (2010) 1534-1538.
[18] V. K. LaMer, R. H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc.,72 (1950) 4847-4854.
[19] Z. Li et al., Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites, Chem. Rev.,120 (2020) 623-682.
[20] H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water, J. Am. Chem. Soc., 127 (2005) 9374-9375.
[21] H. Tsunoyama, H. Sakurai, T. Tsukuda, Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol, Chem. Phys. Lett., 429 (2006) 528-532.
[22] J. N. Kuhn, W. Huang, C. K. Tsung, Y. Zhang, G. A. Somorjai, Structure sensitivity of carbon-nitrogen ring opening: Impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica, J. Am. Chem. Soc., 130 (2008) 14026-14027.
[23] C. J. Kliewer et al., Furan Hydrogenation over Pt(111) and Pt(100) Single-Crystal Surfaces, Pt Nanoparticles from 1 to 7 nm: A Kinetic and Sum Frequency Generation Vibrational Spectroscopy Study, J. Am. Chem. Soc.,132 (2010) 13088-13095.
[24] M. E. Grass, R. M. Rioux, G. A. Somorjai, Dependence of Gas-Phase Crotonaldehyde Hydrogenation Selectivity and Activity on the Size of Pt Nanoparticles (1.7-7.1 nm) Supported on SBA-15, Catal. Letters, 128 (2009) 1-8.
[25] K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G. A. Somorjai, Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Lett., 7 (2007) 3097-3101.
[26] K. M. Bratlie, C. J. Kliewer, G. A. Somorjai, Structure Effects of Benzene Hydrogenation Studied with Sum Frequency Generation Vibrational Spectroscopy and Kinetics on Pt(111) and Pt(100) Single-Crystal Surfaces, J. Phys. Chem. B, 110 (2006) 17925-17930.
[27] K. M. Bratlie, L. D. Flores, G. A. Somorjai, In Situ Sum Frequency Generation Vibrational Spectroscopy Observation of a Reactive Surface Intermediate during High-Pressure Benzene Hydrogenation, J. Phys. Chem. B, 110 (2006) 10051-10057.
[28] T. S. Rodrigues, A. G. M. Da Silva, P. H. C. Camargo, Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities, J. Mater. Chem. A, 7 (2019) 5857-5874.
[29] J. Gu, Y.-W. Zhang, F. (Feng) Tao, Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches, Chem. Soc. Rev., 41(2012) 8050-8065.
[30] W. Yu, M. D. Porosoff, J. G. Chen, Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts, Chem. Rev., 112 (2012) 5780-5817.
[31] N. Takehiro, P. Liu, A. Bergbreiter, J. K. Nørskov, R. J. Behm, Hydrogen adsorption on bimetallic PdAu(111) surface alloys: Minimum adsorption ensemble, ligand and ensemble effects, and ensemble confinement, Phys. Chem. Chem. Phys., 16 (2014) 23930-23943.
[32] J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals, J. Chem. Phys., 120 (2004) 10240-10246.
[33] P. Liu, J. K. Nørskov, Ligand and ensemble effects in adsorption on alloy surfaces, Phys. Chem. Chem. Phys., 3 (2001) 3814-3818.
[34] M. Cui et al., AgPd nanoparticles for electrocatalytic CO2reduction: Bimetallic composition-dependent ligand and ensemble effects, Nanoscale, 12 (2020) 14068-14075.
[35] J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem., 1 (2009) 37-46.
[36] D. Kim, J. Resasco, Y. Yu, A. M. Asiri, P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles, Nat. Commun., 5 (2014) 4948.
[37] S. Furukawa, T. Komatsu, Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis, ACS Catal., 7 (2017) 735-765.
[38] S. Penner, M. Armbrüster, Formation of Intermetallic Compounds by Reactive Metal-Support Interaction: A Frequently Encountered Phenomenon in Catalysis, ChemCatChem, 7 (2015) 374-392.
[39] Y. Yan, J. S. Du, K. D. Gilroy, D. Yang, Y. Xia, H. Zhang, Intermetallic Nanocrystals: Syntheses and Catalytic Applications, Adv. Mater., 29 (2017). 1605997.
[40] L. Liu, A. Corma, Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles, Chem. Rev., 118 (2018) 4981-5079.
[41] H. Rong, S. Cai, Z. Niu, Y. Li, Composition-Dependent Catalytic Activity of Bimetallic Nanocrystals: AgPd-Catalyzed Hydrodechlorination of 4-Chlorophenol, ACS Catal., 3 (2013) 1560-1563.
[42] S. Xie, H. Tsunoyama, W. Kurashige, Y. Negishi, T. Tsukuda, Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25 Clusters by Single Pd Atom Doping, ACS Catal., 2 (2012) 1519-1523.
[43] H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top gold atom on palladium nanocluster, Nat. Mater., 11 (2012) 49-52.
[44] M. J. Sharif, S. Yamazoe, T. Tsukuda, Selective hydrogenation of 4-nitrobenzaldehyde to 4-aminobenzaldehyde by colloidal RhCu bimetallic nanoparticles, Top. Catal., 57 (2014) 10-13.
[45] K. Kusada, H. Kobayashi, R. Ikeda, Y. Kubota, M. Takata, S. Toh, T. Yamamoto, S. Matsumura, N. Sumi, K. Sato, K. Nagaoka, H. Kitagawa, Solid Solution Alloy Nanoparticles of Immiscible Pd and Ru Elements Neighboring on Rh: Changeover of the Thermodynamic Behavior for Hydrogen Storage and Enhanced CO-Oxidizing Ability, J. Am. Chem. Soc., 136 (2014) 1864-1871.
[46] B. Huang, H. Kobayashi, T. Yamamoto, S. Matsumura, Y. Nishida, K. Sato, K. Nagaoka, S. Kawaguchi, Y. Kubota, H. Kitagawa, Solid-Solution Alloying of Immiscible Ru and Cu with Enhanced CO Oxidation Activity, J. Am. Chem. Soc.,139, no. 13, pp. 4643-4646, Apr. 2017.
[47] K. Liu, A. Wang, T. Zhang, Recent Advances in Preferential Oxidation of CO Reaction over Platinum Group Metal Catalysts, ACS Catal., 2 (2012) 1165-1178.
[48] B. Hammer, J. K. Nørskov, Electronic factors determining the reactivity of metal surfaces, Surf. Sci., 343 (1995) 211-220. doi:
[49] M. J. Ndolomingo, N. Bingwa, R. Meijboom, Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts, J. Mater. Sci., 55 (2020) 6195-6241.
[50] T. W. Hansen, A. T. DeLaRiva, S. R. Challa, A. K. Datye, Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?, Acc. Chem. Res., 46 (2013) 1720-1730.
[51] P. Wynblatt, N. A. Gjostein, Supported metal crystallites, Prog. Solid State Chem., 9 (1975) 21-58. doi:
[52] D. D. Beck, C. J. Carr, A study of thermal aging of PtAl2O3 using temperature-programmed desorption spectroscopy, J. Catal.,110 (1998) 285-297.
[53] N. Lopez, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, J. Catal., 223 (2004) 232-235.
[54] J. A. Farmer, C. T. Campbell, Ceria maintains smaller metal catalyst particles by strong metal-support bonding, Science, 329 (2010) 933-936.
[55] C. T. Campbell, J. C. Sharp, Y. X. Yao, E. M. Karp, T. L. Silbaugh, Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts, Faraday Discuss., 152 (2011) 227-239.
[56] C. T. Campbell, J. R. V. Sellers, Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements, Chem. Rev., 113 (2013) 4106-4135.
[57] C. T. Campbell, The Energetics of Supported Metal Nanoparticles: Relationships to Sintering Rates and Catalytic Activity, Acc. Chem. Res., 46 (2013) 1712-1719.
[58] X. Lin et al., Charge-Mediated Adsorption Behavior of CO on MgO-Supported Au Clusters, J. Am. Chem. Soc., 132 (2010) 7745-7749.
[59] C. T. Campbell, Catalyst-support interactions: Electronic perturbations., Nat. Chem., 4 (2012) 597-8.
[60] M. Kitano et al., Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store., Nat. Chem., 4 (2012) 934-40.
[61] M. Kitano et al., Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis, Nat. Commun., 6 (2015) 6731.
[62] M. J. Sharif et al., Electron Donation Enhanced CO Oxidation over Ru-Loaded 12CaO•7Al2O3 Electride Catalyst, J. Phys. Chem. C, 119 (2015) 11725-11731.
[63] H. Hosono, M. Kitano, Advances in Materials and Applications of Inorganic Electrides, Chem. Rev., 121 (2021) 3121-3185.
[64] A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis, Nat. Rev. Chem., 2 (2018) 65-81.
[65] B. Qiao et al., Single-atom catalysis of CO oxidation using Pt1/FeOx, Nat. Chem., 3 (2011) 634-641.
[66] X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis, Acc. Chem. Res., 46 (2013) 1740-1748.
[67] L. Zhang, M. Zhou, A. Wang, T. Zhang, Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms, Chem. Rev.,120 (2020) 683-733.
[68] S. Abbet, U. Heiz, H. Häkkinen, U. Landman, CO Oxidation on a Single Pd Atom Supported on Magnesia, Phys. Rev. Lett., 86 (2001) 5950-5953.
[69] S. Abbet, A. Sanchez, U. Heiz, W.-D. Schneider, Tuning the Selectivity of Acetylene Polymerization Atom by Atom, J. Catal., 198 (2001) 122-127.
[70] D. K. Böhme and H. Schwarz, Gas-Phase Catalysis by Atomic and Cluster Metal Ions: The Ultimate Single-Site Catalysts, Angew. Chemie Int. Ed., 44 (2005) 2336-2354.
[71] H. Wei et al., FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes, Nat. Commun., 5 (2014) 5634.
[72] D. S. J., C. Ken, M. H. Damon, Future CO2 Emissions and Climate Change from Existing Energy Infrastructure, Science, 329 (2010) 1330-1333.
[73] J. Rogelj et al., Paris Agreement climate proposals need a boost to keep warming well below 2 °C, Nature, 534 (2016) 631-639.
[74] Q. Lai et al., Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture, Nat. Commun., 9 (2018) 2672.
[75] R. P. Ye et al., CO2 hydrogenation to high-value products via heterogeneous catalysis, Nat. Commun., 10 (2019) 5698.
[76] X. Jiang, X. Nie, X. Guo, C. Song, J. G. Chen, Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis, Chem. Rev., 120 (2020) 7984-8034.
[77] Y. A. Daza, J. N. Kuhn, RSC Advances comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels, RSC Adv., 6 (2016) 49675-49691.
[78] W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40 (2011) 3703-3727.
[79] A. Goguet, F. C. Meunier, D. Tibiletti, J. P. Breen, R. Burch, Spectrokinetic Investigation of Reverse Water-Gas-Shift Reaction Intermediates over a Pt/CeO2 Catalyst, J. Phys. Chem. B, 108 (2004) 20240-20246.
[80] P. Gao et al., Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nat. Chem., 9 (2017) 1019-1024.
[81] O. Martin et al., Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation, Angew. Chemie Int. Ed., 55 (2016) 6261-6265.
[82] A. Corma, P. Serna, P. Concepción, J. J. Calvino, Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics, J. Am. Chem. Soc., 130 (2008) 8748-8753.
[83] M. Boronat, P. Concepción, A. Corma, S. González, F. Illas, P. Serna, A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with Nanoparticles of Gold on TiO2 Catalysts:  A Cooperative Effect between Gold and the Support, J. Am. Chem. Soc., 129 (2007) 16230-16237.
[84] C. Avelino, S. Pedro, Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts, Science, 313 (2006) 332-334.
[85] M. J. Sharif, P. Maity, S. Yamazoe, T. Tsukuda, Selective hydrogenation of nitroaromatics by colloidal iridium nanoparticles, Chem. Lett., 42 (2013), 1023-1025.
[86] K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto, Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles, Nat. Nanotechnol., 16 (2021) 140-147.
[87] R. L. Borup et al., Recent developments in catalyst-related PEM fuel cell durability, Curr. Opin. Electrochem., 21 (2020) 192-200.
[88] C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Surface and Interface Control in Nanoparticle Catalysis, Chem. Rev., 120 (2020) 1184-1249.
[89] F. J. Perez-Alonso et al., The Effect of Size on the Oxygen Electroreduction Activity of Mass-Selected Platinum Nanoparticles, Angew. Chemie Int. Ed., 51, (2012) 4641-4643.
[90] M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity, Nano Lett., 11 (2011) 3714-3719.
[91] K. Qadir et al., Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS., Nano Lett., 12 ( 2012) 5761-8.
[92] D. Li et al., Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case, Energy Environ. Sci., 7 (2014) 4061-4069.
[93] C. Wang et al., Monodisperse Pt3Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity, J. Phys. Chem. C, 113 (2009) 19365-19368.
[94] L. Gan, S. Rudi, C. Cui, M. Heggen, P. Strasser, Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis, Small, 12 (2016) 3189-3196.
[95] B. K. Min, C. M. Friend, Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation, Chem. Rev., (2007) 2709-24.
[96] M. Valden, X. Lai, D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science, 281 (1998) 1647-1650.
[97] M. Comotti, W.-C. Li, B. Spliethoff, F. Schüth, Support effect in high activity gold catalysts for CO oxidation., J. Am. Chem. Soc., 128 (2006) 917-24.
[98] V. M., L. X., G. D. W., Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties, Science, 281 (1998) 1647-1650.
[99] S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang, G. A Somorjai, Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation., Nano Lett., 10 (2010) 2709-2713.
[100] S. Grundner et al., Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol, Nat. Commun., 6 (2015) 7546.
[101] F. Zhang et al., Tailoring the Oxidation Activity of Pt Nanoclusters via Encapsulation, ACS Catal., 5(2015) 1381-1385. doi: 10.1021/cs501763k.
[102] X. Pan, X. Bao, Confinement Effects in Nanosupports in: Nanomaterials in: Catalysis, First Ed. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2012, pp. 415-441.
[103] Y. Liu, H. Tsunoyama, T. Akita, S. Xie, T. Tsukuda, Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au, ACS Catal., 1 (2011) 2-6. doi: 10.1021/cs100043j
[104] F. Jiao et al., Selective conversion of syngas to light olefins, Science, 351 (2016) 1065-1068.
[105] H. M. Torres Galvis, J. H. Bitter, T. Davidian, M. Ruitenbeek, A. I. Dugulan, and K. P. De Jong, Iron particle size effects for direct production of lower olefins from synthesis gas, J. Am. Chem. Soc., 134 (2012) 16207-16215.
[106] G. L. Bezemer et al., Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts, J. Am. Chem. Soc., 128 (2006) 3956-3964.