Nanomaterials in Machine Learning Based Prosthesis


Nanomaterials in Machine Learning Based Prosthesis

Deepali Salwan and Shri Kant

Machine learning has found its application in various fields. With the advent of technology, it has even found its way in the prosthesis field as doctors are using nano materials to conduct surgery in amputees and predicting the results of the surgery with the help of machine learning. The same techniques have also been successfully applied within the medical field, in addressing diverse clinical applications such as interpreting electrocardiograms, detecting dementia, cardiovascular diseases, or predicting the prognosis and survival rates for breast cancer or melanomas. By adopting Machine Learning Techniques (MLT) into medical analysis, diagnostic accuracy is increased, costs are reduced, and human resources are saved. To date, the effectiveness of MLTs for enhancing joint implant design has not been examined. Our goal of this paper is to check the role nanomaterials play during the design of a machine learning based prosthesis.

Prosthesis, Machine Learning, Reinforcement Learning, Joint Implant, Hip Surgery, Amputee

Published online 2/1/2023, 19 pages

Citation: Deepali Salwan and Shri Kant, Nanomaterials in Machine Learning Based Prosthesis, Materials Research Foundations, Vol. 141, pp 353-371, 2023


Part of the book on Emerging Applications of Nanomaterials

[1] R. Langer, D. A. Tirrell, Designing materials for biology and medicine, Nature, 428 (2004) 487-492.
[2] M. K. Anderson, Dreaming about nanomedicine. Wired Magazine, November, 2000.
[3] M. R. Gwinn, V. Vallyathan, Nanoparticles: Health effects-pros and cons, Environmental Health Perspectives 114 (2006) 1818-1825.
[4] I. Linkov, F. K. Satterstrom, L. M. Corey, Nanotoxicology and nanomedicine: Making hard decisions, Nanomedicine: NBM 4 (2008) 167-171.
[5] K. K. Jain, Nanomedicine: Application of nanobiotechnology in medical practice, Med. Prin. Pract. 17 (2008) 89-101.
[6] A. Cavalcanti, B. Shirinzadeh, M. J. Zhang, L. C. Kretly, Nanorobot hardware architecture for medical defense, Sensors 8 (2008) 2932-2958.
[7] J. M. Hootman, C. G. Helmick, Projections of US prevalence of arthritis and associated activity limitations, Arthritis Rheum. 54 (2006) 226-229.
[8] M. H. Huo, J. Parvizi, N. F. Gilbert, What’s new in hip arthroplasty, JBJS 88 (2006) 2100-2113.
[9] A. Bagno, A. Piovan, M. Dettin, A. Chiarion, P. Brun, R. Gambaretto, G. Fontana, C. Di Bello, G. Palù, I. Castagliuolo, Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides, Bone 40 (2007) 693-699.
[10] A. W. Bridges, N. Singh, K. L. Burns, J. E. Babensee, L. A. Lyon, A. J. Garcia, Reduced acute inflammatory responses to microgel conformal coatings, Biomaterials 29 (2008) 4605-4615.
[11] H. Wagner, Surface replacement arthroplasty of the hip, Clin. Orthop. 134 (1978) 102-130.
[12] W. C. Head, Wagner surface replacement arthroplasty of the hip: Analysis of fourteen failures in forty-one hips, The Journal of Bone and Joint Surgery, American volume 63-A (1981) 420-427.
[13] W. N. Capello, T. M. Trancik, G. Misamore, R. Eaton, Analysis of revision surgery of resurfacing hip arthroplasty, Clin. Orthop. 170 (1982) 50-55.
[14] B. E. Bierbaum, R. Sweet, Complications of resurfacing arthroplasty, Orthop. Clin. North Am. 13 (1982) 761-775.
[15] W. C. Head, The Wagner surface replacement arthroplasty, Orthop. Clin. North Am. 13 (1982) 789-797.
[16] M. A. Freeman, G. W. Bradley, ICLH surface replacement of the hip: An analysis of the first 10 years, The Journal of Bone and Joint Surgery, British volume 65 (1983) 405-411.
[17] J. Daniel, P. B. Pynset, D. J. W. McMinn, Survival analysis of metal-on-metal hip resurfacing in patients under the age of 55 years with osteoarthritis, The Journal of Bone and Joint Surgery, British volume 86-B (2004) 177-84.
[18] H. Pandit, S. Glyn-Jones, P. McLardy-Smith, R. Gundle, D. Whitwell, C. L. Gibbons, S. Ostlere, N. Athanasou, H. S. Gill, D. W. Murray, Pseudotumours associated with metal-on-metal hip resurfacings, J. Bone Joint Surg. Br. 90 (2008) 847-51.
[19] E. Dunstan, D. Ladon, P. Whittingham-Jones, R. Carrington, T. W. R. Briggs, Chromosomal aberrations in the peripheral blood of patients with metal-on-metal hip bearings, The Journal of Bone and Joint Surgery, American volume 90 (2008) 517-522.
[20] M. N. Rahaman, B. S. Bal, J. P. Garino, M. Ries, A. Yao, Ceramics for prosthetic hip and knee joint replacement, J. Am. Ceram. Soc. 90 (2007) 1965-1988.
[21] M. Nygren, Z. Shen, On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering, Solid State Sciences, 5 (2003) 125-131.
[22] M. Yoshimura, T. Noma, K. Kawabata, S. Somiya, Role of H2O on the degradation Process of YTZP, J. Mater. Sci. Lett. 6 (1987) 465-467.
[23] J. Chevalier, B. Cales, J. M. Drouin, Low-temperature ageing of Y-TZP ceramics, J. Am. Ceram. Soc. 82 (1999) 2150-2154.
[24] R. C. Garvie, R. H. J. Hannink, R. T. Pascoe, Ceramic steel, Nature 258 (1975) 703.
[25] C. M. Sharkness, S. Hamburger, R. M. Moore, R. G. Kaczmarek, Prevalence of artificial hips in the United States, J. Long Term Effects Med. Implants 2 (1992) 1-8.
[26] Y. Murase, E. Kato, K. Daimon, Stability of ZrO2 phases in ultrafine ZrO2-Al2O3 mixtures, J. Am. Ceram. Soc. 69 (1986) 83-87.
[27] D. J. Green, Critical microstructures for microcracking in Al2O3-ZrO2 composites, J. Am. Ceram. Soc. 65 (1982) 610-614.
[28] P. F. Becher, Transient thermal stress behaviour in ZrO2-toughenend Al2O3, J. Am. Ceram. Soc. 64 (1981) 37.
[29] A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials 23(2002) 937-945.
[30] C. Pecharromán, J. F. Bartolomé, J. Requena, J. S. Moya, S. Deville, J. Chevalier, G. Fantozzi, R. Torrecillas, Percolative mechanism of aging in zirconia-containing ceramics for medical applications, Adv. Mater. 15 (2003) 507-511.
[31] S. Deville, J. Chevalier, G. Fantozzi, J. F. Bartolomé, J. Requena, J. S. Moya, R. Torrecillas, L. A. Díaz, Low temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants, J. Eur. Ceram. Soc. 23 (2003) 2975-2982.
[32] S. Deville, J. Chevalier, C. Dauvergne, G. Fantozzi, J. F. Bartolomé, J. S. Moya, R. Torrecillas, Microstructural investigation of the aging behavior of (3Y-TZP)-Al2O3 composites, J. Am. Ceram. Soc. 88 (2005) 1273-1280.
[33] T. Nakanishi, M. Sasaki, J. Ikeda, F. Miyaji, M. Kondo, Mechanical and phase stability of zirconia toughened alumina, Key Engineering Materials 330-332 II (2007) 1267-1270.
[34] G. Pezzotti, K. Yamada, S. Sakakura, R. P. Pitto, Raman spectroscopic analysis of advanced ceramic composite for hip prosthesis, J. Am. Ceram. Soc. 91 (2008) 1199-1206.
[35] S. Choi, H. Awaji, Nanocomposites – a new material design concept, Science and Technology of Advanced Materials 6 (2005) 2-10.
[36] A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Slow crack growth behaviour of zirconia toughened alumina ceramics processed by different methods, J. Am. Ceram. Soc. 86 (2003) 115-20.
[37] M. Schehl, L. A. Díaz, R. Torrecillas, Alumina based nanocomposites from powder-alcoxide mixtures, Acta Materialia 50 (2002) 1125-1139.
[38] S. Deville, J. Chevalier, G. Fantozzi, J. F. Bartolomé, J. Requena, J. S. Moya, R. Torrecillas, L. A. Díaz, Development of advanced zirconia-toughened alumina nanocomposites for orthopaedic applications, Key Engineering Materials 264-268 (2004) 2013-2016.
[39] J. Chevalier, S. Deville, G. Fantozzi, J. F. Bartolomé, C. Pecharromán, J. S. Moya, L. A. Díaz, R. Torrecillas, Nanostructured ceramic oxides with a slow crack growth resistance close to covalent materials, Nano Letters 5 (2005) 1297-1301.
[40] J. Chevalier, A. H. De Aza, G. Fantozzi, M. Schehl, R. Torrecillas, Extending the lifetime of ceramic orthopaedic implants, Advanced Materials 12 (2000) 1619-1621.<1619::AID-ADMA1619>3.0.CO;2-O
[41] M. Nawa, S. Nakamoto, T. Sekino, K. Niihara, Tough and strong Ce-TZP/Alumina nanocomposites doped with titania, Ceram. Inter. 24 (1998) 497-506.
[42] K. Tanaka, J. Tamura, K. Kawanabe, M. Nawa, M. Uchida, T. Kokubo, T. Nakamura, Phase stability after aging and its influence on Pin-on-Disk wear properties of Ce-TZP/Al2O3 nanocomposite and conventional Y-TZP, J. Biomed. Mater. Res. 67A (2003) 200-207.
[43] K. Tanaka, J. Tamura, K. Kawanabe, M. Nawa, M. Oka, M. Uchida, T. Kokubo, T. Nakamura, Ce-TZP/Al2O3 nanocomposites as a bearing material in total joint replacement, J. Biomed. Mater. Res. 63 (2002) 262-270.
[44] M. Uchida, H. M. Kim, T. Kokubo, M. Nawa, T. Asano, K. Tanaka, T. Nakamira, Apatite-forming ability of a Zirconia/Alumina nano-composite induced by chemical treatment, Inc. J. Biomed. Mater. Res. 60 (2002) 277-282.
[45] R. Benzaid, J. Chevalier, M. Saâdaoui, G. Fantozzi, M. Nawa, L. A. Diaz, R. Torrecillas, Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications, Biomaterials, 29 (2008) 3636-3641.
[46] R. Torrecillas, L. A. Díaz, Nanocomposites for biomedical applications, International Journal of Materials Research, 2008.
[47] H. G. Richter, G. Willmann, Realiability of ceramic components for total hip endoprostheses, British Ceramic Transactions 98 (1999) 29-34.
[48] C. Piconi, G. Maccauro, L. Pilloni, W. Burger, F. Muratori, H. G. Richter, On the fracture of a zirconia ball head, J. Mater. Sci.: Mat. In Med. 17 (2006) 289-300.
[49] H. G. Richter, Fractography of bioceramics, Key Eng. Mat. 223 (2002) 157-180.
[50] S. Deville, J. Chevalier, L. Gremillard, Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia, Biomaterials 27 (2006) 2186-2192.
[51] M. Cao, J. Su, S. Fan, H. Qiu, D. Su, L. Li, Wearable piezoresistive pressure sensors based on 3D graphene, Chemical Engineering Journal, 406 (2021) 126777.
[52] K. Arikan, H. Burhan, R. Bayat, F. Sen, Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel-cobalt nanocomposites on f-MWCNT, Chemosphere 291 (2022) 132720.